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Appendix 

The governing equation for flow of water in 
saturated-unsaturated zone with variable-density fluid is 
given by 
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where   and r  are the density of water;   and 

r  are the dynamic viscosity of freshwater; 
eS  is the 

fractional effective water saturation; 
sS  is the specific 

storage; rh  is the pressure head in terms of water of a 
reference temperature; )( res hSC    is the soil water 
capacity;   is the fractional porosity; rK  is the 
hydraulic conductivity in terms of water of a reference 
temperature; 

iQ  is the withdrawal rate of a pumping well 
i ; 

i  is the Dirac delta function for the pumping or 
injection well; z  is the upward vertical coordinate.  

For unsaturated porous media, van Genuchten [4] 
provided functional relations for the parameters

eS and 

rK in Equation (1) as follows:  
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where 
s , and r  are the volumetric water 

content (VWC), the saturated VWC, and the residual 
VWC, respectively;   and   are the characteristic 
constants of soil to be evaluated from experiments; 

rsK  
is the saturated hydraulic conductivity in terms of a 
reference temperature. 

The governing equation for heat transport in the 
saturated-unsaturated zone is given by 

t
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Where T is temperature; 
wC)( is the volumetric 

heat capacity of water phase. Assigning 
sC)(  of the 

volumetric heat capacity of solid phase and 
aC)(  of the 

volumetric heat capacity of air phase, the bulk volumetric 

heat capacity )( C  is calculated by   

saw CCSCSC ))(1())(1()()(    (5)
  

The tensor element of λ  is given by  

ijijmdedij DC)()(     (6) 
 

where 
ed and 

md are the bulk thermal conductivity 
and the mechanical thermal dispersivity; 

ijD  is the 
hydrodynamic dispersion coefficient. And the dispersion 
tensor is defined by 
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where v  is the average velocity; 
kv  and 

mv  are 
the velocity components of two coordinate directions, k  
and m ; 

ij  is the Kronecker Delta;
e  is the bulk 

thermal diffusivity; L  is the longitudinal dispersivity; 

T  is the transverse dispersivity 

 

 

 

 

 

 

 

 


