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The E-ATES system was constructed at Shinshu University, Japan. Since November 15, 2011, a pilot plant of
groundwater-source heat pump (GSHP) system coupled with the E-ATES has been put into operation for cooling and
heating two lecture rooms of a building. The result of the experiment from 2011 to 2012 revealed that the GSHP system
with E-ATES is superior to the conventional air-source HP systems. The result of numerical simulations for E-ATES
optimization shows that the recovery of stored thermal energy can be significantly improved by changing a scheme of

pumping and recharging.
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INTRODUCTION

A typical ATES system uses pumped groundwater as
a heat source while discharged heat from air-conditioning
process is stored in aquifer systems. However, the stored
thermal energy may be lost under the condition of flowing
groundwater due to heat conduction and dispersion
without proper control of groundwater flow and heat
transport. The idea of the E-ATES is to construct a
withdrawal/injection  well system by controlling
groundwater flow by means of withdrawal and injection of
groundwater. This system enables maximization of cool
and warm recovery by optimizing withdrawal and injection
rates at wells.

Figure 1 illustrates the E-ATES system constructed
for cooling and warming two rooms (108 m2 each) of a
lecture building at Shinshu University [1]. Pumped
groundwater is first treated at a pre-water quality
treatment unit to reduce suspended solids and dissolved
minerals, then sent to heat pumps connected with fan coil
units (FCU) and air conditioners. After heat exchange at
the heat pumps, used groundwater is delivered to a
post-water treatment unit for de-aeration and finally to
injection wells of C1 or C2. On the other hand, a
conventional air-source HP (ASHP) system was also
constructed for a room of the same building for comparing
the efficiency of both systems.
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Figure 1. A schematic diagram of the groundwater-source HP system based on the E-ATES.
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RESULTS OF THE OPERATION

We operated the developed system during the period
of November, 2011 to October, 2012 so that SCOP is
improved by modifying the whole system [2] [3]. The
comparison of the SCOP between E-ATES GSHP and
ASHP shows that the E-ATES GSHP is superior to the
ASHP all over the seasons as shown in Figure 2. Further,
the monitoring data of the GSHP system under the cooling
experiment showed much higher performance than the
warming experiment.
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Figure 3. The results of numerical simulation based on an
actual operating conditions by SWATER3dp

However, as the results of numerical simulation
based on the actual system operating conditions by
SWATER3dp (Subsurface Water and Thermal Energy
Resources; 3-dimensional model using prism finite
elements) as shown in Figure 3 and the results of field
observation, the stored cool during winter and the warm
during summer were not recovered as we first planned
due to small flow velocity of groundwater, which is
attributed to accuracy of field tests.

SYSTEM OPTIMIZATION BY NUMERICAL
SIMULATIONS

Scenario

Numerical simulations by SWATER3dp were
performed to analyze coupled phenomena of groundwater
flow and heat transport in the aquifer system in order to
optimize the E-ATES GSHP system.

Hereafter, we name the past operation scenario
“Operation 1”7 and a new pumping and recharging
scenario “Operation2” and “Operation3” that are based on
the evolved groundwater conditions for numerical
simulation as shown in Table 1. In “Operation2”,
groundwater is pumped from D1 well and recharged into
C1 well during summer, while in winter pumped from C1
and recharged into D1. In “Operation3”, groundwater is
pumped from D2 well and recharged into C2 well during
summer, while in winter pumped from C2and recharged
into D2.

Table 1. Scenario for optimize the E-ATES GSHP system.

Well system for air-conditioning

Scenario Cooling Heating
Pumping Injection Pumping Injection

Operationt | 4 c2 D2 c1
(baseline)
Operation2 | 4 c1 C1 D1
(improved)
Operation3 |y, c2 D2 c2
(improved)

Results of the numerical simulations

Figure 4(a) shows the simulated groundwater
temperature profile of Operation 1, and Figure 4(b) and
Figure 4(c) show that of Operation 2 and Operation 3,
respectively. The stored energy is recovered in Operation
2 and Operation 3 whilst not in Operation 1. The
calculated recovery rate of thermal energy for each
scenarios are shown in Table 2. The result of Operation 1
shows that stored energy can hardly be recovered. With
regard to Operation 2, 50.4% of the stored cold energy
and 20.4% of the stored warm energy can be recovered in
the third year. In case of Operation 3, the stored energy
can be recovered, but the recovery rate was inferior to the
Operation 2. This reason is assumed that aquifer 2 is the
width of aquifer shallower than aquifer1. Therefore, in
Operation 2 by using aquifer1, the stored heat has
remained a lot by around the injection wells.
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Figure 4. Simulated groundwater temperature of each
scenarios.

Table 2. Calculated heat recovery rate.

Scenario Heat Recovery rate

1st.year | 2nd.year | 3rd.year
Operation1 Vc\/::tlgr - 0.0% 0.0%
(baseline) WZI[’Q 0.0% 0.0% o
Operation2 V(V:g’:gr ) 46.1% 50.4%
(improved) wig; 18.1% 19.5% 204%
Operation3 V(V:g’:gr - 26.2% 28.5%
(improved) w::;r:r 13.6% 14.9% 15.0%

CONCLUSION

The SCOP of the GSHP system coupled with the
E-ATES during the winter and summer season of
2011-2012 has been improved by several modifications of
the GSHP system and was favorably compared with that
of the ASHP system. However, the E-ATES still has a
potential to improve its efficiency by recovering and
utilizing the cool and warm recharged into aquifers. Thus,
we performed numerical simulations for optimizing the
operational scenario of the welll system. The results of the
simulations show that the heat recovery rate will be
remarkably improved by thermal energy recovery
associated with modification of the well system. The
predicted numerical simulations show that the recovery
rate of stored heat can be accelerated by using Aquifer 1.
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Appendix

The governing equation for flow of water in
saturated-unsaturated zone with variable-density fluid is
given by

Vel wp + L2 -Y 00
H P, i=1

oh,
ot

+C, ah")+gS P

= p(S.S
PSS, o <2

where p and p are the density of water; , and
4. are the dynamic viscosity of freshwater; S is the
fractional effective water saturation; S is the specific
storage; /_ is the pressure head in terms of water of a
reference temperature; C (=¢3S,/0h,) is the soil water
capacity; & is the fractional porosity; K,  is the
hydraulic conductivity in terms of water of a reference
temperature; (. is the withdrawal rate of a pumping well
i; 5{_ is the Dirac delta function for the pumping or
injection well; z is the upward vertical coordinate.

For unsaturated porous media, van Genuchten [4]
provided functional relations for the parameters S and
K, in Equation (1) as follows:

B s e L B ©)
=0 (1+|an,|"y B
2
K, = Km_Se”z{l - (1 - S€I/7Y} ®3)

where §,0 and ¢ are the volumetric water
content (VWC), the saturated VWC, and the residual
VWC, respectively; o and [ are the characteristic
constants of soil to be evaluated from experiments; K
is the saturated hydraulic conductivity in terms of a
reference temperature.

The governing equation for heat transport in the
saturated-unsaturated zone is given by

Ve (V)= 0(p0), Vo) = (pO S (@)

Where T is temperature; (pC), is the volumetric
heat capacity of water phase. Assigning (pC), of the
volumetric heat capacity of solid phase and (p(C) of the
volumetric heat capacity of air phase, the bulk volumetric

heat capacity (pC) is calculated by
(pC)=€S(pC),, +e(1-S)(pC), +(1-&)pC), (5)
The tensor element of A is given by
Aij = Aea +(Apa) iy = (PC)Dy; (6)

where 4 and 4  are the bulk thermal conductivity
and the mechanical thermal dispersivity; D,l_ is the
hydrodynamic dispersion coefficient. And the dlspersion

tensor is defined by

D.=«a

kavm‘/‘v‘ +K,

ij ijkm
aijkm = 6zTé‘[/'é‘km + (7)
(aL - aT)(é‘iké‘jm + é‘imé‘/’k ) / 2

where v is the average velocity; v, and vy are
the velocity components of two coordinate directions, &
and m ; 0, is the Kronecker Delta; K, is the bulk
thermal dif'fdsivity; a, is the longitudinal dispersivity;
o, s the transverse dispersivity



