冠水・干出を考慮した3次元潮汐流シミュレーションに関する研究

THREE DIMENSIONAL NUMERICAL SIMULATION OF WETTING AND DRYING BED DUE TO TIDAL CURRENTS

黒岩正光1・中平順一2・松原雄平3
Masamitsu KUROIWA, Junichi NAKAHIRA and Yuhei MATSUBARA

1正会員 工博 鳥取大学助教授 工学部土木工学科（〒680-8552 鳥取市朝川町南4-101）
2正会員 八千代エンジニアリング㈱（〒161-8575 東京都新宿区西新宿2-18-12）
3正会員 工博 鳥取大学教授 工学部土木工学科（〒680-8552 鳥取市潮川町南4-101）

This paper presents a new 3D tidal current model that can compute the wetting and drying bed in the tidal flats due to tidal motion. The governing equations are derived from 3D Navier Stokes equations. The governing equations are solved using the fractional step method, combining the finite difference method in the horizontal plane and the finite element method in the vertical plane. First, in order to investigate the performance of the presented model, a model test associated with the artificial tidal flat surrounded by breakwaters is carried out. Secondly, the tidal current with the wetting and drying bed in the shallow water around a small fishing port in the field site is simulated. Finally, the applicability of the presented model is discussed.

Key Words : Tidal current, Tidal flat, 3D numerical simulation, Fractional step method

1. はじめに

潮間帯は、生態系や物質輸送にとって重要な場で
あり、精度の良い流動予測が必要不可欠である。潮間帯の
冠水・干出を考慮した潮汐流の予測は、従来、平面2次
元モデル（例えば、加藤ら）や層間型の3次元多層
モデル（例えば、小澤ら）が主として用いられている。
平面2次元モデルでは、流れの鉛直構造が表現できない。
多層モデルでは、ある程度水深の深いところでは、鉛直
構造は表現できるが、干渉のような潮間帯では、鉛直方
向の層数が少なくなり、鉛直構造は表現困難である。こ
のような欠点を補うため、中山8)は、POM®をベースと
したs座標系の冠水・干出モデルを提案している。

本研究では、これまでのモデルは別の手法、すなわ
ち、Koutitasら9)が提案したFractional Step方法による冠水・
干出を考慮した新たな潮汐流の3次元予測モデルを提案し、
数値実験と現地レベルの計算を試み、モデルの妥当
性を検討しようとするものである。

2. 数値モデルの概要

(1) 運動方程式及び連続式

3次元のN-S方程式にて静水圧近似およびプンセスク近
似した運動方程式を基礎式とする。静水面上におけるy
軸を、鉛直上向きにy軸をとると、

\[
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - v \frac{\partial u}{\partial y} - w \frac{\partial u}{\partial z} - g \frac{\partial \zeta}{\partial x}
\]

\[
+ \frac{\partial}{\partial x} \left(\varepsilon_h \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\varepsilon_h \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(\varepsilon_h \frac{\partial u}{\partial z} \right)
\] \hspace{1cm} (1)

\[
\frac{\partial v}{\partial t} = -u \frac{\partial v}{\partial x} - v \frac{\partial v}{\partial y} - w \frac{\partial v}{\partial z} - g \frac{\partial \zeta}{\partial y}
\]

\[
+ \frac{\partial}{\partial x} \left(\varepsilon_h \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(\varepsilon_h \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(\varepsilon_h \frac{\partial v}{\partial z} \right)
\] \hspace{1cm} (2)

ここに、ζは水面変位、gは重力加速度、\varepsilon_hおよび\varepsilon_v
は水平及び鉛直流動粘性係数で、Smagorinskyモデル

\[
\varepsilon_h = C_h \Delta x \Delta y \left[\frac{\partial u}{\partial x} \right]^2 + \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right]^{0.5}
\] \hspace{1cm} (3)

\[\varepsilon = C_1 \Delta x \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2 \right] \]

(4)

を用いる。

連続式は

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \]

(5)

水面変動 \(\zeta \) および鉛直方向流速 \(w \) はそれぞれ

\[w = w_{z-h} - \frac{\partial}{\partial x} u \int_{h}^{z} dz - \frac{\partial}{\partial y} v \int_{h}^{z} dz \]

(6)

および

\[\frac{\partial z}{\partial t} = - \frac{\partial}{\partial x} u \int_{h}^{z} dz - \frac{\partial}{\partial y} v \int_{h}^{z} dz \]

(7)

から計算される。

(2) 数値計算法

本研究では、Koutitasら \(^6\) が吹送流の計算に用いたFractional Step法を適用する。この手法は、連動方程式を水平方向の微分項と鉛直方向の微分項の2つに分けて解く方法である。以下の2段階に分けて時間積分を行う方法である。これまでは直線状および実線の吹送流の計算に、山下ら \(^7\) が高潮計算、黒岩ら \(^8\) が海浜流の準3次元解析に適用している。本モデルは、実線ののみの海浜流の準3次元モデルのコードを潮流モデルに改良したものである。x 方向の運動方程式のみについて示すと、

Step 1 ;

\[\frac{\partial u^{m}}{\partial t} - \frac{u^{d} - u^{m}}{dt} = L_1(u^{m}) - g \frac{\partial z^{m}}{\partial x} \]

(8)

Step 2 ;

\[\frac{\partial u^{m+1}}{\partial t} - \frac{u^{m+1} - u^{m}}{dt} = L_2(u^{m+1}) \]

(9)

ここに,

\[L_1 = -u^{m} \frac{\partial}{\partial x} + v^{m} \frac{\partial}{\partial y} - w^{m} \frac{\partial}{\partial z} \]

\[+ \frac{\partial}{\partial x} \left(\frac{(u^{m}) \frac{\partial z}{\partial x}}{(u^{m}) \frac{\partial z}{\partial x}} \right) + \frac{\partial}{\partial y} \left(\frac{(v^{m}) \frac{\partial z}{\partial y}}{(v^{m}) \frac{\partial z}{\partial y}} \right) \]

(10)

\[L_2 = \frac{\partial}{\partial x} \left(\varepsilon \frac{\partial z}{\partial x} \right) \]

(11)

これらの式に、zに関する線形の形状関数を乗じ、ガラーチン有限要素法を用いて離散化を行うが、水平方向における微分項の離散化は有限差分法を適用する。鉛直方向に有限要素法を用いて離散化するため、水深の大きさに関わらず等分割、あるいは底面近傍だけ細かく分割することも可能であり、浅海領域でも流れの鉛直分布を計算することが可能である。なお、各変数の位置はスタッガード格子で定義する。

(3) 水面および底面における境界条件

水面には、風や波による摩擦せん断力は作用しないものとすると、

\[\frac{\partial u}{\partial x} = 0, \quad \frac{\partial v}{\partial y} = 0 \quad (z = \zeta) \]

(12)

底面では、底面摩擦せん断力が作用するため、

\[\varepsilon \frac{\partial u}{\partial z} = r_{ux}, \quad \varepsilon \frac{\partial v}{\partial z} = r_{vy} \quad (z = -h) \]

(13)

ここに、\(r_{ux} \) および \(r_{vy} \) は底面摩擦係数であり、

\[r_{ux} = \frac{\rho g \sqrt{u^2 + v^2}}{C^2} \]

(14)

で表され、\(C \) はChesey係数（例えば、桝木ら \(^9\)）を用いた以下のよう表した。

\[C = \frac{1}{n} (h + \zeta - 1.0)^{1/6} \quad : \quad h + \zeta \geq 1.1 \text{m} \]

(15)

\[C = \frac{0.683}{n} (h + \zeta) \quad : \quad h + \zeta \leq 1.1 \text{m} \]

(16)

のように表した。

底面における \(w \) は

\[w = -n \frac{\partial h}{\partial x} - v \frac{\partial h}{\partial y} \]

(17)

とした。

(4) 開境界の取り扱い

対象とする場が閉鎖された領域である場合、開口部において潮汐の水位変動を与えればよい。一方、側面および側流域がすべて開境界である場合、特に海岸線に沿って潮流が、海岸線にほぼ平行な往復流となっている場合、側面と側方で、水位の分布あるいは流速分布を与える必要がある。しかしながら、本モデルでは、冠水・干出を考えることから、側方での水位あるいは流速分布の変化が複雑になると考えられる。そこで、本研究では、開境界の場合は、側流域ののみに水位変動を与える方法を試みることにする。すなわち、沿岸方向に位相差を考慮した正弦関数による水位変動を与える。側方は周期境界とする。詳細は後述する。

(5) 潮間帯における冠水・干出計算

潮汐による極浅海の冠水と干出を再現するにはいくつかの手法が提案されているが、本研究では、加藤らの手法を用いて冠水・干出計算を試みた。

下げ潮時は、水位が下がり干渉が露出するにつれて、
ある実水深以下になったところで陸域（計算領域外）として新たに境界を設定すればよい。一方、上げ潮時は水位上昇に伴い、陸域から海域となるところの水深を設定し、新たな境界を設定する必要がある。加藤らと同様に、まず、上げ潮時と各計算ステップ内で、境界を不透過として計算領域内の水位と流速を計算し、次のステップに入る前に、計算された水位を境界外に外挿する。外挿は図-1に示すように行うが、陸域のある1点が海域の2点以上のところから外挿されるときは、2あるいは3点の平値を用いることとする。なお、外挿された点の実水深が正であれば、海域とされるが、実際の計算では、ある程度の水深が必要である。本モデルでは、試行錯誤の結果、0.2mがその限界であり、外挿した点における実水深が0.2m以上であれば、海域として計算領域とした。なお、下げ潮時に実水深が0.2m未満であれば、干渕域としている。水位の外挿時には、流速も外挿する必要があるが、水位変調が微小であると仮定し、流速値は0としている。連続条件は厳密には満たされていないが、中山らも述べているように数値計算上の問題は無い。

図-1 水位の外挿方法の一例

3. 閉鎖水域における計算

(1) 計算の概要

まず、図-2に示すような構造物で囲まれた人工干渕を想定したモデル領域における潮流計算を試みた。計算条件は表-1に示すとおり、格子間隔\(\Delta x\)および\(\Delta y\)は10m、時間間隔\(\Delta t\)を0.5sとした。x=0mにおける入射流界では、W2分潮に相当する12時間周期の水位変動を与えた。

表-1 計算条件

<table>
<thead>
<tr>
<th>入射境界の水位と流速</th>
<th>側方境界の流速</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\zeta = a \sin (\omega t))</td>
<td>(\partial u/\partial x = 0)</td>
</tr>
<tr>
<td>振幅</td>
<td>周期</td>
</tr>
<tr>
<td>a (m)</td>
<td>T (hours)</td>
</tr>
<tr>
<td>1.5</td>
<td>12</td>
</tr>
</tbody>
</table>

(2) 計算結果

図-3(a)～(c)は上げ潮時における断面平均流速ベクトルの時間変化を示したものである。図-3(d)は上げ潮時においてのy=200mの位置における鉛直断面の流速分布を示したものである。図-4(a)～(d)は下げ潮時における同様の結果を示したものである。これらの図から、干満および流速の様子が計算されていること、上げ潮および下げ潮時において閉口部において流速が速くなっていること、上げ潮時には、閉口部流入による干渕による渦が計算されていることなどが確認できる。なお、鉛直方向には上等分割（節点数6）としている。

図-2 干渕モデルの計算領域

図-3 上げ潮時の流速ベクトル分布
図-4 下げ潮時の流速ベクトル分布

図-5 西郷港と周辺の海底地形（D. L. 値）

表-2 計算条件

<table>
<thead>
<tr>
<th>入射境界の水位と流速</th>
<th>側方境界の流速</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\zeta = \alpha \cos \alpha \sin(\alpha \cos \alpha + \beta \sin \alpha - \sigma)$</td>
<td>$\frac{\partial \varphi}{\partial x} = 0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>振幅 a (m)</th>
<th>α (度)</th>
<th>周期 T (hour)</th>
<th>Δx (m)</th>
<th>Δy (m)</th>
<th>Δt (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>45</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(3) 計算結果および考察

図-6を、千潮、上げ潮最強時、満潮時および下げ潮最強時における流速ベクトルを示したものである。

図-10は、鉛直分布の計算結果の一例である。これらの図から、千潮、満潮の様子、沖側防波堤に沿う往復流が計算されていること、さらに、流速の鉛直分布が計算されていることがわかる。

図-11は平成16年12月1日〜15日にかけてる冲側防波堤沖で2
時間毎に測られた流速の平均値と1潮汐分の計算結果を
プロットしたものである。実測値と計算値ともに、北方
と東方成分で表している。この図から、現地では、ほぼ
東西方向の往復流となっており、計算結果も同様な傾向
で変動しているのがわかる。つぎに、图-12は実測され
た流速から調和解析によって得られたM2成分の潮流槽円
と計算結果を比較したものである。この結果から、本モ
デルを用いて計算された潮流槽円の長軸方向は、実測値
とほぼ同様な傾向にあるが、下げ潮時（東向き）の流速
が過大評価されている。この原因としては、岸側に水位
分布しか与えていないことや、境界において流入流出する
流速分布、遅角などを考慮していないことが考えられる。

以上の結果から、本モデルにおいて、対象とする港湾
が小規模であるか狭隘である場合、本手法で現地港
付近の往復流と干溝の変化は再現されている。しかしな
がら、定量的には問題が残されている。

今後、開境界において水位分布だけではなく、詳細な
流速分布などの与え方なども再検討する必要がある。
5. おわりに

本研究では、有限差分法と有限要素法を併用したFractional Step法による干渕域の冠水・干出と流れの鉛直分布を考慮できる新たな3次元潮流シミュレーションモデルを提案した。閉鎖域された水域（人工干潟）を想定したモデルおよび現地における潮流計算を試みた。

比較的簡単な手法であるが、計算結果から潮汐波による干渕域の干出・冠水の様子と流れの鉛直分布が計算できることわかった。開境界を有する現地計算では、対象とする港周辺の潮汐による流れを定性的ではあるが、計算可能であることがわかった。しかしながら、現地における水位変動、流速分布などの設定が不十分であること、沖側および陆側境界における水位分布、流速分布の与え方など検討の余地が残されている。今後、境界条件の与え方を再検討するとともに、シルテーション、塩分および水温変化に伴う密度変化を考慮したモデルにも発展させるつもりである。

謝辞：本研究は、平成16年度「共同研究」（島根大学、八千代エンジニアリング株式会社、代表：黒岩正光）の研究成果の一部であることを付記する。また、平成16年度文部省科学研究費補助金（基盤研究C（2）。「人工生命手法による中海生態系環境の評価手法に関する研究」、代表：松原雄）の補助を受けて行った。さらに、本研究を遂行するにあたり、長崎県沿岸部における現地資料を提供して戴いた、ここに、感謝の意を表する。

参考文献
1) 加藤一正、田中則男、黒川和夫：干渕上の潮流計算および干渕変形予測の手法、港湾技術研究所報告、Vol.18, No.4, pp.3-75, 1985.
2) 小澤宏雄、増田丈一、大塚文和、居間知樹：干渕・干出順における Devils 河口を考慮した潮流シミュレーションに関する研究、海岸工学論文集、第50巻、pp.399-400、2003.
7) 山下隆男、土屋義人、吉岡義、野村義威：海岸工学論文集、第40巻、pp.211-215、1993.
8) 黒岩正光、野田英明、芳村隆広：準3次元海浜流動の数值シミュレーションに関する研究、海岸工学論文集、第44巻、pp.151-155、1997.
9) 柿木信哉、能川 誠、山本博文：白川・綾川河口の干渕形成に及ぼす潮位・潮流と河川流の影響、海岸工学論文集、第47巻、pp.636-640、2000.
10) 小松利光、安達貴浩、金納 慶、矢野真一郎、小橋乃子、藤田和夫：有明海における流れと物質輸送に関する現地観測、海岸工学論文集、第50巻、pp.936-940、2003.