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1. INTRODUCTION

In recent vears, the pollution of the oceans with plastic waste has become a global environmental problem, and its
impact on ecosvstems has become apparent (Schmidt et al | 2017). While international efforts are underway, 2019 the
Ozaks Blue Ocezn Vision of the G20 declared that the discharge of plastic waste into the ocean will be reduced to
practically zero in 2050. Since a large percentage of marine plastic debris origmates from mland (Jambeck et al | 2015),
it iz extremely important to understand how much plastic debris is discharged from rivers. In the case of microplastics
(plastic frapments lezs than 5 mm in zize), measurement methods have been establizhed to some extent, and these
fragments have been monitored in many rivers in Japan (Nihei et al, 2020). In contrast, there are very few data on
macroplastics (plastics larger than 5 mm) because of the lack of established measurement methods. On the other hand,
Kataoka and Nihei (2020) have recently developed an image analyziz method (RIAD, River Image Analysis for Debris
flux) to momitor the amounts of debris transported in nivers by using the color difference between the surface of the river
water and floating debris. The target of this RIAD is the entire river debris, which consists of artificial debris such as
plastic debrizs and natural debris such as vegetation, and the discrimination (binarization) between the water surface and
the entire river debris 1= performed by setting the threshold value of the color difference value. In addition, Yoshida et al.
(2021) have set two thresholds to discriminate between the water surface, artificial debriz, and natural debris
(trilateration). Although the RIAD has proven to be useful to a certain extent, it is neceszary to set the threshold for
recognizing artificial and natural debris for each river site, and it iz imposzible to discriminate the types of plastic
products at present, so new analysis techniques are needed.

Deep leaming, which has made remarkable progress in recent vears, is usefial for this type of image analysis. Desp
leamning iz a method for automatically learning features from a large amount of data and making predictions using a
neural network modeled on the human brain's neural circuits (LeCun et al., 2015). When this deep learning is applied to
the field of imaging, it can automatically learn the features of a target object and 1dentify its location and type. Although
deep leamning has also been applied to river environment monitoring, there are no examples of its application to
macroplastic debris in rivers.

The purpose of thiz study iz to develop 2 method for calculating the area and discrimmating the tvpes of macroplastic
debriz in rivers bazed on deep leaming as an alternative image analysis method to RIAD. For this purpose, we first took
mages of plastic debns floating m an actual river under normal conditions and used them as traming and validahon data
for deep learning. As a method for estimating the area of plastic debris, we use “Semantic Segmentation” based on
“Convolutional Neural Network (CNN) (LeCun et al.. 1989) 7, which iz often uzed for deep leaming of images. In
addition, YOLO (You Only Lock Once) (Jozeph et al., 2016) . one of the object detection models, 15 used as the type-
discrimination method. In addition, the applicability of the deep leaming model developed in this study is verified uzing
images of the water surface during flood conditions in rivers. This paper is a part of Ota et al (2021).



2.METHODS FOR COLLECTING AND ANALYZING DEBRIS DATA IN ARIVER
UNDER NORMAL FLOW

1.1 Data collection of plastic waste

In order to collect various types and numbers of training and prediction data for deep learning, we photographed
artificial and natural debris, including plastic, floating on the surface of real river water under a normal flow condition.
The observation site was Kati Bridge on the Ohori River in Kashiwa City, Chiba Prefecture, Japan (Figure 1). The date
znd time of the observation were September 17, 2020 from 10:00 to 16:00, and the flow condition was normal. At the
site, 3 digital video cameras (HC-WX920M, Panazonic) were installed vertically dowmward on the parapet of the bridge
shown in Figure 2, and many debris prepared in advance were poured from the upstream side of the filming area,
collected at the downstream side, and the scene was recorded by DV cameras. The obtained movies were divided into
1zeconds nd still images were created. The resolution of the images variez depending on the camera, but for the analysiz
described below, we used images taken with a range of 2.1 m x 1.1 m_ 3840x2160 pixels (px) (= 0.035*0.05lem/px), and
4x mapnification. Tzble 1 shows the debriz used in thiz study. The natural debris includes 50 branches and leaves. The
uzed debriz was passed around 6 one by one, and its appearance waz photographed. The smallest piece of debris was a
cigarette butt (= 4.16 cm2).
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Figure 1 Observation site of the Ohori River under a normal condition.
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Figure 2 Collection images for floating debris in the river.



Table 1 Average debris area and number of images used for training and validation data (pink:
plastic debris, light blue: non-plastic artificial debris, green: natural debris, colorless: water surface)

Typoof ot | e g | 2P 9800 |t )| o
PET hattle 170 145 Can 85 35
Flastic containar] 182 a0 Bottle 53 14
Plastic bag 355 49 Paper carlon 162 3
Straw 15 49 Mature 10819 28
Food tray 242 a7 Leaf 996 [
Cigarette butts 5 24 Water surface 1
Cigarette lighter 1 12 13 types, 585 images in total

1.1 How to calculate the area of artificial debris by CNN

To calculate the area of debris floating on the water surface, we use semantic segmentation by CNIN. Semantic
segmentation iz 8 method to identifyv objects by pixel unitz, and by using thiz method, we can detect artificial debriz at
each pixel and calculate the area. The procedure for analyzing the area of artificial debris using CNN iz summerized in
Fig. 3. First, as a preparation before the analysis, we prepare an image in an actual river and its answer image (the trash
zrea | and others 0). Next, image features are extracted from the training images uzing a kemel, one of spatial filters, in
the convelution layer. In the betch normalization after the convolution laver, the input values are normalized (mean Q,
variance 1) to improve learning efficiency, and the activation function ELU (Exponential Linear Unit) is applied. In this
paper, we uge a simple CNN, but we plan to try more general U-net and other methods in the fiture. Az data, we uzed
424 images for artificial and natural debris from the movies recorded at the Ohori River for training and 161 images
(artificial 109 and natural 32) for verification (total 383 images, Table 1). In the same table, the number of images of
each type of debriz uzed iz alzo listed. The number of images of the most frequently obszerved types of debriz was
increazed in reference to the deposited debris in rivers {Arakawa Clean Aid, 2016). In order to reduce the load on the

iz, the resolution of the images was reduced from the original 3840=2160 pixels to 960340 pixels for the

. In addition, to make the images suitable for leaming and prediction, we cropped multiple images at 256=236
pLxel= In order to compare the accuracy of calculating the area of artificial debris by CNN, we also calculated the area of
debris by 2 thresholds (75 and 100) in the RIAD.
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Figure 3 Analysis flow of artificial debris area using CNN (semantic segmentation)

1.3 Detection of plastic tvpe using YOLO

TOLO 1= an object detection model that determines the location and type of an object. YOLO uses CNN to detect the
center coordinates, width, height, and object tvpe of a bounding box surrounding the object to be detected and divides
the image into several prids for fast detection in real time. We used the latest version of YOLOvS as the model and
implemented 1t on Google Colaboratory. To classify debnis, we crezted models for the following 3cases: Case 1: arificial
znd natiral debris, Case 2: plastic, non-plastic artificial, and natural debris, and Case 3: 12 types of debris shown in
Table 1. In 3 cases, the water surface was included in the analysis. For the training and prediction data, we uzed the 583
images taken at the Oheri River under normal conditions as well as the CNN, and the types of debris and the number of
prepared images are shown in Table 1. The image size iz $60x340 pixels. The answer images were tagged with the
objects in the image by type uzsing VOTT software.



3.RESULTS AND DISCUSSION FOR RIVER DATA IN A LOW FLOW CONDITION

3.1 Accuracy for calculating area of artificial debris

In order to examine the accuracy of caleulating the zrea of debriz by CNN, Figure 4 shows the results of calculating the
zrea of plastic bags and PET bottles by using CNN and RIAD with the original images. In the analysis results, plastic
debris and others are shown in white and black colors, respectively. In the RIAD, the threshold of plastic waste
dizcrimination iz zet as 73 and 100. First, CNN was able to reproduce most of the plastic bagz and PET bottles, but zome
parts of the PET bottles were mizsed. IN contrast, the RIAD overestimated the area of debriz because white color is
scattered in the area other than the plastic bags and PET bottles when the threshold iz set to be 73. On the other hand, the
CIWN with threzhold value of 100 mizzed a part of the plastic bag and does not reproduce the PET bottle at all. Next, we
compare the accuracy of area calculation quantitatively. We calculate TP (ratio of pixels that debriz could be estimated az
debris), FP (ratio of pixels that was predicted to be debris but was mistaken), and FN (the number of pixels where debriz
was predicted not to be debriz but was mistaken), which are uzed to evaluate the accuracy of deep leaming, caleulate the
following 2 indices (TIoU and missing rate).

Iou=TP/({TP+FFP+FN) I
Missing rate = FN/( TP + FA 27

2 indices (IoU and missing rate) obtained for the analysis results of CNIN and RIAD are shown in Figure 3. From this,
the average value of IoU iz 0.75 for CNN, but 0.22 and 0.15 for RIAD with the thresholds of 75 and 100, respectively. It
means that the CWN analysis iz more zecurate than the RIAD. Az for the mean value of mizszing rate, which should be
low, the relationship is CNN < RIAD (threshold 75) < RIAD (threshold 100). The mean value of IoU for CNN iz 0.73,
which means that there is a prediction error of 23%. This error comresponds to the mean value of missing rate (=0.22),
which reflects the fact that a part of the PET bottle was miszed, az shovn in Figure 4. These results indicate that the
CNWN is a more accurate method for calculating the area of debris than the RIAD.
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Figure 4 Examples of detection results of plastic area using CNN and RIAD with threshold of 75 and 100
{White: plastic, Black: other).
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Figure 5 Comparison of area calculation accuracy between CNN and RIAD
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3.2 Accuracy for identifying plastic types using YOLO

Figure & shows the results of Case 3 2z an example of the discrimination of debris types by YOLO. It can be seen that in
the Case 3, the debns are surrounded by a rectangular area and the type of debmis can be accurately 1dentified. The
accuracy (= number of correct answers / number of verification) was 88.3, 83.6, and 61.0 % for Cases 1,2, and 3,
respectively. It can be seen that the more detsiled the classification of the debris, the lower the accuracy. The
classification of natural and artificial debns (Case 1) and the classification of the presence or absence of plastic (Case 2)
are generally good. Looking at the percentage of accuracy in Case 3 for each tvpe of debris (Table 2), the accuracy for
bundles and branches of natural debris is low, but the accuracy for the artificial debris is generally high As shown above,
the YOLO iz generally able to distinguish among vanous debris.

moﬂle 0.97
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Figure 6 Example of debris type discrimination in Case 3 of the YOLO
(Left: PET bottle, Right: food tray)

In Case 3, we examined the dependence of the accuracy on the number of training data and the area of debris in order to
investigate the reason why the accuracy decreased for some tvpes of artificial debris as shown in Figure 7. Figure 7 (a)
showe that the accuracy improves up to about 30 data but saturate to gbout 80% above that mamber. However, there are
s0me variations in the accuracy (e.g., a triangle and a circle in the figures) even for the same mumber of leaming data.

One of the factors is the debris area (Figure 7(b)), and the accuracy decreases when the debris area is too small (=100
em2) or too large (10,000 em2). The former mav be due to the problem of image resolution. and the latter may be due
to the fact that the rectangular frame could not be set because it was too large compared to the image size. In the fiture,
we will increase the number of training images az well, it 1z necessary to improve the accuracy of YOLO type
discrimination by zetting the sppropriate rezolution and engle of view size.



Table 2 Discrimination accuracy for each type of debris in Case3 of the YOLO.

Type of debris u:::c::';:; Accuracy | Type of debris v::::::';:; Accuracy
PET battle 14 T1% Can 4 75%
Plaslic container 8 83% Boltle 4 25%
Plastic bag 2 50% Paper carton 1 D%
Straw 2 100% Nalure 10 20%
Food tray 4 75% Leaf a Ba%
Cigarette butls 2 50%  |Waler surface 1 100%
Cigaretle lighter 1 0% o —_—
(a)1
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Figure 7 Examination of factors for reducing the accuracy of the YOLO.
((a) number of learning images, (b) debris area)



4. APPLICATION TO MACRO-PLASTIC DEBRIS DETECTION IN RIVERS UNDER
FLOOD

4.1 OQutline of detection method

In this paper, we examine the applicability of the deep leaming model YOLO, which iz a method for discriminating
types of macroplastic debris in rivers, to actual iver monitoring during flood. The target site i3 a drainage channel in the
Tenpaku River bazin flowing through Yokdeaichi City, Mie Prefecture, Japan, where the suthors conducted field
obzervations12). In this study, 137 images including debriz were selected as the training and validation images from the
videos taken contmuously from August 2019 to September 2020, including floods. We prepared three datazets which are
A) 5835 images of the Ohori River, B) 87 images of drainage channelz, and C) 672 images of both A) and B), to examine
the nfluence of the training datazet on the accuracy of the YOLO. The types of debris discriminated were Case | to 3 as
described above, and the accuracy of the model was verified on 30 images of the drainage channel (62 pieces of artificial
debriz in total).

4.2 Results and issues

Asz an example of discrimination of macro plastic debris floating in a drainage channel. Figure 8 shows results of Case 3
using training the dataset-A. As shown in Figure 8, two plastic bags floating in the drainage channel can be discriminated
during the devtime. Although the validstion images included nighttime images, we were able to dizcriminate macro
plastic debris. Figure & shows the accuracy of the YOLO with the training datazet-A B and C. The accuracy is the ratio
of the number of pieces for which we were able to determine the type of debris to the number of pieces for verification.
It can be zeen thet the accuracy iz in the relationship of datazet-A < datmzet-B < datazet-C in all 3 cases. This indicates
that the images of the local river (here, the drainage channel) are more important than the images of the other river (here,
the Ohori River), and that increasing the number of images by mixing both of them greatly contributes to improving the
aceuracy of debriz identification. Although the overall accuracy decreazes as the number of debris types increszes (ie.,
Caze 1 > Case 2 = Case 3), the accuracy for Case 3 using the training dataset-C iz 47 %, which is slightly lower than the
result for the Ohori River under normal conditions. Looking at the accurazey for each type of debris in this case (Table.
3), the sccuracy for plastic bags, which are the largest number among debriz, iz over 50%, while the aceuracy for plastic
bottles, which are the smallest number among debris, is alse low. It was also confirmed that the YOLO did not
mizsrecognize bubbles and waves as debris, even though they were observed in the images taken under floods. From the
gbove, the YOLO can improve the aceuracy of macroplastic debris discrimination by increzzing the traming data and
incorporating images of the target sites. For this, it is necessary to collect and accumulate images mainly of macroplastic
debris scattered in rivers. In particular, it is necessary to take video images under various weather conditions (especially
flood) and dav/night conditions in order to aceurately grasp the debris transport during whele floed . When
photographing the surface of the water in this local river, the resolution should be high enough to identify major
macroplastic debris such as plastic bags and bottles. However, if the magnification is increased too much and the
shooting range iz narrowed, it will be easier to identify macroplastic debriz, but the mumber of macroplastic debriz within
the camera's angle of view will decrease. In addition, it is unclear how many and what kind of debris images should be
learned in order to improve the accuracy of the YOLO model, and this is an issue for further study.



Figure 8 Example of artificial debris discrimination in the draina;

e channel in
Case3 with the dataset-C. (Photo taken at 10:20, March 2,%020)
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Figure 9 Comparison of accuracy of artificial debris with the training dataset-
A, Band C in 3 cases.

Table 3 Accuracy for plastic-type discrimination with the training dataset-C in Case 3.

Tyge of debris Mumber of | Mumber of becuracy
erifications | carrect
—————
PET baottles 5 1 20%
Plastic bag 50 26 52%
Food tray [ 2 33%
Can 1 0 0%




5. CONCLUSIONS

In this paper, in order to construct a deep learning-based method for discriminating the area and type of macroplastics,
debris images in normal and emergent rivers are trained, and CNN and YOLO are used for deep leaming. The
conclusions obtained are as follows.

1) For a low-flow condition, the CNIN mav be a more accurate method for caleulating the debris area than the RIAD,
although 1t mizsed some of the artificial debriz floating on the water surface. Smmilarly, the accuracy of the YOLO m
discriminating debris tvpes was generally high for anthropogenic debris, although it was low for bundles and branches of
natural debris.

2) As aresult of verifving the applicability of the YOLO to actual rivers during floods, the discrimination accuracy was
improved by increasing the number of training data and incorporating images of the target site

Thank you for your watching!

ABSTRACT

In recent years, plastic debriz pollution in the oCean has become a global envircnenental problam, and its impact on ecosvstems has become
apparent. Since most of the marine plastic debriz originates from terrestrial sources, it is important to measurs the macroplastics(=3 mm})
debriz that enters the ocaan via rivers.

The purpose of this study is to devalop a new image analvsiz method for determining the area and tvpe of macroplastics debris floating in
mivers bazed on deep learning.

In order to create the traming data, various types of artificial and natural debris flesting on the surface of water in a normal river wers
photographed (385 images in total). To estimate the area of plastic debriz, we used Semantic 3sgmentation based on CI1, which iz often
uzad for deep learning of images. The ramult: were compared with FIAD (Fiver Imags Analavs for Debris flux). In addition, YOLO, one of
the object detection models, iz uzed az a tvpe discrimination method. In addition, the applicability of the deep leamning model developed in
this sudw iz verified uzing imagas of the surface of river water during an actual water outflow:.

The arsa estimation method vzing TN showed better resulrs than RIAD i two indices, IoT and mizs rete, indicarng that it iz & highly
acourats method for caloulating the area of debriz, althouszh soms mizzes remam.

Inthe case of type discrimination by YOLO, the comrect answer rate (= number of comract answers / number of verified answers) was
=ful. The percentage of correct answers for bundles and branches of natural types was
low, but the percentage of correct answears for artificial tvpes of litter was genarally hizh,

Az g ramilt of applving YOLO to the river at the tims of rmoff, the acouracy of the tvpe idenrification of plastic litter was graatly mprovad
by adding the littsr images taken &t the te to the training data, and the comacines:s ratz of the tvpe Wentfication was: 47%.

In the future, it iz neceszary to collect and accunmlate images of macroplastics debriz, which iz widsh scartered in rivers. For thiz purpose, it
iz mecessary to taka video images under various weather condition: and dav/nizht conditions, but it i unclear how many images (number of
images) and what kind of litter images should be trained, and this iz an tzzue for further study.
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EVALUATION OF AREA AND TYPES OF FLOATING MACROPLASTICS
IN RIVERS DUE TO DEEP LEARNING

Hiro OTA, Tomoya KATAOKA, Takushi YOSHIDA and Yasuo NIHEI

Marine plastic wastes have been mostly originated from inland, and it is important to monitor macro-
plastics inflow into oceans via rivers. This study aims to develop a new image processing to capture the
area and types of macroplastics with deep learning. The learning data for floating debris were collected
with the field test under normal and flooding conditions. CNN and YOLO were applied to find the area and
types of macroplastics. The results indicated that the CNN and YOLO can capture acceptably the area and
types of macroplastics in normal flow condition. It is noted that add of the learning data under flooding
conditions can greatly improve the accuracy of distinguishing the types of macroplastics by YOLO.

1.906



	aguposter_ota
	2022_196_yoshida



