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An anomaly detection method for river revetment using VAE is being studied. This previous study was conducted for a 
single block shape, and it is necessary to investigate a method that can be applied to blocks of various shapes in the future. 
However, it has been pointed out that the reconstruction performance of VAE is low. Hence, there is a possibility that some 
blocks may be difficult to reconstruct. On the other hand, VQ-VAE, which enables high-resolution image generation by using 
discrete latent variables, and SQ-VAE, which further improves its performance, have been proposed. In this study, we 
investigate the characteristics of both the continuous latent variable model (DIP-VAE) used in the previous study and the 
discrete latent variable model (SQ-VAE) with high reconstruction performance, with the aim of performing anomaly detection 
on various types of blocks. 
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