ISSN 0386-5878
土木研究所資料 第4427号

土木研究所資料

谷埋め高盛土の地震時変形に関する 動的遠心模型実験

令和4年7月

国立研究開発法人土木研究所 地質・地盤研究グループ土質・振動チーム

Copyright $\ensuremath{\mathbb{C}}$ (2022) by P.W.R.I.

All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I.

この報告書は、国立研究開発法人土木研究所理事長の承認を得て刊行したも のである。したがって、本報告書の全部又は一部の転載、複製は、国立研究開発 法人土木研究所理事長の文書による承認を得ずしてこれを行ってはならない。

土木研究所資料 第4427号 2022年7月

谷埋め高盛土の地震時変形に関する 動的遠心模型実験

(国研)土木研究所 地質・地盤研究グループ	上席研究員	佐々木哲也
]]	主任研究員	加藤 俊二
]]	主任研究員	東 拓生
]]	交流研究員	佐々木直也
]]	元上席研究員	杉田 秀樹
]]	元研究員	水橋 正典
]]	元研究員	榎本 忠夫
]]	元研究員	梶取 真一
]]	元交流研究員	大 川 寛
]]	元交流研究員	川添 英生

要 旨:

山岳地に多くみられる谷状地形上の高盛土(以下,谷埋め高盛土)で,地震時の被害が大規 模になりやすく,地震後の道路交通機能の確保に支障となることが多い.安全・安心な道路盛 土の構築に向け,谷埋め高盛土の合理的な耐震性診断手法及び耐震性向上策の確立が必要 である.

土木研究所では,平成17年度から令和3年度にかけて,盛土の各種条件と地震時変状の 関係及び地震時の変状対策工の効果に関する計82ケースの谷埋め高盛土の動的遠心模型 実験を実施してきた.本資料は,これらの遠心模型実験の実験条件および実験結果をとりまと めたものである.

キーワード:谷埋め高盛土、耐震設計、耐震対策、動的遠心模型実験

目次

1.	序論	. 1
2.	実験条件	2
	2.1 実験装置の概要	. 2
	2.2 実験ケース	. 3
	2.2.1 実験ケースの一覧	. 3
	2.2.2 実験ケースの目的等	. 5
	2.3 模型の作製	. 6
	2.3.1 地山模型の作製	. 6
	2.3.2 盛土模型の作製	. 7
	2.3.3 メッシュと標点の設置	. 8
	2.3.4 対策工	. 9
	2.4 土質試験	14
	2.5 模型実験の手順	22
	2.6 加振条件	23
	2.7 測定	24
3.	実験条件および結果	26
4.	データ集について1	92

1. 序論

山岳地に多くみられる谷状地形上の高盛土(以下,谷埋め高盛土)で,地震時の被害が大規模 になりやすく,地震後の道路交通機能の確保に支障となることが多い.安全・安心な道路盛土の 構築に向け,谷埋め高盛土の合理的な耐震性診断手法及び耐震性向上策の確立が必要である.

盛土の耐震性能は、盛土の材料、密度(締固め度)に加えて、盛土内の水位条件に影響される ところが大きい.特に、近年は発生土の有効利用に伴い盛土材料が多様化してきていることもあ り、細粒分が多く、高い含水状態の谷埋め高盛土で被害が多くみられている.

一方,これらに対する耐震性向上策については,のり尻部の抑え効果を有する対策(ふとんか ご工,押え盛土工など),のり尻部の排水対策工(基盤排水層,水平排水層,排水補強杭など)の ほか,構造的対策(グラウンドアンカー工など)などが考えられるが,その効果,適用条件等は 明らかになっていない.

また,盛土内に何らかの原因で難透水層及びその上部に宙水が形成されると,基盤排水層やの り尻ふとんかご工など,盛土内の水位低下やのり尻を安定化させる対策工の効果が限定的となる ことが懸念される.

土木研究所では、平成17年度から令和3年度にかけて、盛土の各種条件と地震時変状の関係及び地震時の変状対策工の効果に関する計82ケースの谷埋め高盛土の動的遠心模型実験を実施してきた.本資料は、これらの遠心模型実験の実験条件および実験結果をとりまとめたものである.

2. 実験条件

2.1 実験装置の概要

本研究で実施した動的遠心模型実験は国立研究開発法人土木研究所所有の大型動的遠心力載荷 試験装置*を用いて,動的大型土槽(幅1500mm,奥行き300mm,高さ500mm)の内部に盛土および 地山模型を作製して実施した.動的遠心模型実験で載荷した遠心加速度は50G,75Gの2種類とし た.

※大型動的遠心力載荷試験装置は,H9年度完成した後,H29年度に装置全体の改修工事が行われ,主 に加振能力を増強した.

写真 2.1 大型遠心力載荷試験装置

写真 2.2 動的大型土槽(幅 1500mm, 奥行き 300mm, 高さ 500mm)

2.2 実験ケース

2.2.1 実験ケース一覧

実施した動的遠心模型実験は、全82ケースである.実験ケースの一覧表を表2.1に示す. 実験ケースによっては、複数回のステップ加振を行ったケースもあるが、本資料には1ステッ プ目の結果のみを示す.

また、加振前に静的に崩壊が生じたケースは本資料から除外した.

表 2.1 実験ケースの一覧

番号	年度	No.	対策工	法尻付近 地山傾斜	盛土高 (m) ^{※1}	給水槽水位 (GL-m) ^{※1,2}	盛土材料名	細粒分含有率 F _C (%)	塑性指数 Ip	締固め度 D _C (%)	締固め含水比 w(%)	法肩沈下量 (m) ^{※1}	遠心加速度 (G)	入力波
1		1	無対策	あり	15.0	0.5	江戸崎砂	8.1	-	85	16.8	0.10	50	地震波(I-I-3)
2		2	無対策	あり	15.0	0.5	江戸崎砂	8.1	-	85	16.8	1.70	50	地震波(I-I-3)
3	H17	3	ふとんかご # 2014년 - 177	あり	15.0	0.5	江戸崎砂	8.1	-	85	16.8	0.68	50	地震波(I-I-3)
5		4	差量排小層 段付ふとんかご	あり	15.0	0.5	江戸崎砂	8.1	-	82	16.8	1.39	50	地震波(I-I-3) 地震波(I-I-3)
6		1	無対策	なし	15.0	0.5	江戸崎砂	6.9	-	90	16.7	0.40	50	地震波(神戸波)
7		2	基盤排水層	なし	15.0	0.5	江戸崎砂	6.9	-	85	16.7	0.61	50	地震波(神戸波)
8		3	無対策	なし	15.0	0.5	江戸崎砂	6.9	-	85	16.7	1.76	50	地震波(神戸波)
9		4	無対策	あり	15.0	0.5	江戸崎砂	6.9	-	85	16.7	1.68	50	地震波(神戸波)
10	H18	5	無対策	あり	15.0	0.5	江戸崎砂	6.9	-	82	16.7	2.20	50	地震波(神戸波) 地震波(加三波)
12		7	無対策	あり	15.0	0.5	江戸崎砂	6, 9	-	82	16.7	2.04	50	地震波(神戸波)
13		8 基盤排水層 あり 15.0 0.5 江戸崎砂 6.9 - 82 16.7 2.18 50									50	地震波(神戸波)		
14		9	基盤排水層	あり	15.0	0.5	江戸崎砂	6.9	-	82	16.7	1.65	50	地震波(神戸波)
15		10	ふとんかご	あり	15.0	0.5	江戸崎砂	6.9	-	82	16.7	2.25	50	地震波(神戸波)
16		1	無対策	あり	15.0	9.1	江戸崎砂	9.4	-	82	15.3	0.62	50	地震波(神戸波)
1/		2	無対策	あり	15.0	9.0	江戸崎砂	9.4	-	82	15.3	0.89	50	地震波(神戸波) 地震波(神戸波)
18		3	無対策	あり	15.0	9.2	江戸崎砂	9.4	-	82	15.3	0.68	50	地展波(神戸波) 地電波(袖戸波)
20		5	基盤排水層	あり	30.0	3.2	江戸崎砂	9.4	-	82	15.3	0.57	75	地震波(神戸波)
21		6	基盤排水層	あり	30.0	3.2	江戸崎砂	9.4	-	82	15.3	16.69	75	地震波(神戸波)
22	HI9	7	無対策(地山江戸崎砂)	なし	15.0	3.2	江戸崎砂	9.4	-	82	16.4	0.83	50	地震波(神戸波)
23		8	基盤排水層(地山江戸崎砂)	なし	15.0	0.7	江戸崎砂	9.4	-	82	16.4	5.71	50	地震波(神戸波)
24		9	基盤排水層(地山江戸崎砂)	なし	15.0	1.1	江戸崎砂	9.4	-	82	15.4	3.26	50	地震波(神戸波)
25		10	基盤排水層	あり	15.0	1.0	能發有料道路盛土材	77.6	29.8	85	40.3	0.43	50	地震波(神戸波) 地震波(神戸波)
20		12	<u>差温</u> 排小層 <u>基態</u> 排水層	あり	15.0	6.6	能登有料道路盛土树	77.6	29.8	82	40. 3 25. 8	0.18	50	地展設(神戸波) 地震波(神戸波)
28		1	無対策	あり	15.0	1.2	江戸崎砂	9.2	-	82	14.8	0.94	50	地震波(神戸波)
29		2	横ボーリング	あり	15.0	2.2	江戸崎砂	9.2	-	82	14.8	0.63	50	地震波(神戸波)
30		3	ふとんかご, 押え盛土	あり	15.0	2.2	江戸崎砂	9.2	-	82	14.8	2.00	50	地震波(神戸波)
31		4	押え補強盛土	あり	15.0	0.7	江戸崎砂	9.2	-	82	14.8	-	50	地震波(神戸波)
32		5	ふとんかご,押え盛土,横ボーリング	あり	15.0	1.5	江戸崎砂	9.2	-	82	14.8	1.38	50	地震波(神戸波)
33	H21	5	押え補頭盛土, 横ホーリンク 綱制剤ぬ 加き成土	あり	15.0	1.3	江戸崎砂	9.2	-	82	14.8	1.17	50	地震波(伸戶波) 地震波(加回波)
35		8		あり	15.0	1.4	江戸崎砂	9.2	-	82	14.8	3.96	50	地震波(神戸波)
36		9	ふとんかご,押え盛土	あり	15.0	6.9	江戸崎砂	9.2	-	82	14.8	0.75	50	地震波(神戸波)
37		10	無対策	あり	15.0	6.9	江戸崎砂	9.2	-	82	14.8	0.79	50	地震波(神戸波)
38		11	無対策	あり	15.0	7.0	江戸崎砂	9.2	-	82	14.8	0.77	50	地震波(神戸波)
39		12	トレンチ(硅砂3号)	あり	15.0	1.4	江戸崎砂	9.2	-	82	14.8	3.45	50	地震波(神戸波)
40		1	排水補強机	あり	15.0	1.1	江戸崎砂	9.2	-	82	15.8	0.58	50	地震波(神戸波) 地震波(神戸波)
41		2	いり作、シブリンドアンカー	あり	15.0	1.2	江戸崎砂	9.2	-	82	15.8	2.21	50	地震波(神戸波)
43		4	無対策	あり	15.0	1.8	武料A	21.2	-	90	23.5	0.46	50	地震波(神戸波)
44	H22	5	無対策	あり	15.0	1.2	試料B	35.7	-	90	23.5	0.31	50	地震波(神戸波)
45		6	無対策	あり	15.0	1.1	武料C	54.9	-	90	29.0	0.31	50	地震波(神戸波)
46		7	ふとんかご, 押え盛土, 基盤排水層	あり	30.0	4.5	江戸崎砂	9.2	-	82	14.3	0.17	75	地震波(神戸波)
47		o か C /V / ··· ··· ··· ··· ··· ··· ··· ··· ··							75	地震波(神戸波)				
48		2	無対策	あり	15.0	1.7	江戸崎砂+DLクレー	43.5	NP	90 87	11.0	-	50	地震波(伸戶波) 抽雷波(加百波)
50		3	無対策	あり	15.0	3.0	江戸崎砂+DLクレー	43.5	NP	92	17.8	0.17	50	地震波(神戸波)
51	110.0	4	無対策	あり	15.0	2.9	江戸崎砂+SA400	57.1	6.6	90	17.2	0.17	50	地震波(神戸波)
52	H26	5	無対策	あり	15.0	1.8	江戸崎砂+SA400	57.1	6.6	86	17.1	0.26	50	地震波(神戸波)
53		6	無対策	あり	15.0	2.7	江戸崎砂+SA400	57.1	6.6	90	16.6	0.16	50	地震波(神戸波)
54		7	無対策	あり	15.0	2.4	江戸崎砂+SA400	57.1	6.6	90	13.4	-	50	地震波(神戸波)
55		0 元の床 のワ 1.0.0 2.0 ①」「明数T1L/V ⁻¹ 3.0 AT 00 11.9 0.08 50 1 無対策 あり 15.0 2.0 江戸崎数+SA400 57.1 6.6 90 17.2 0.95 50									50	地震波(伸尸波)		
57		2	無対策	あり	15.0	2.0	江戸崎砂+SA400 江戸崎砂+SA400	57.1	6.6	90	17.2	0.25	50	地震波(神戸波)振動0.7倍 地震波(神戸波)
58		3	無対策	あり	15.0	2.1	江戸崎砂+SA400	57.1	6.6	90	14.3	1.98	50	地震波(神戸波) _{振興0.7倍}
59	110.7	4	無対策	あり	15.0	1.4	江戸崎砂+SA400	57.1	6.6	85	17.3	0.25	50	地震波(神戸波) _{振編0.7倍}
60	H27	5	無対策	あり	15.0	2.2	江戸崎砂+SA400	57.1	6.6	85	14.1	1.58	50	地震波(神戸波) _{振幅0.7倍}
61		6	ふとんかご	あり	15.0	5.3	江戸崎砂+SA400	57.1	6.6	90	14.4	0.43	50	地震波(神戸波) _{振編0.7倍}
62		7	ふとんかご	あり	15.0	5.1	江戸崎砂+SA400	57.1	6.6	90	14.5	0.98	50	地震波(神戸波) _{振興0.7倍}
64		8	ふとんかご,打込み杭(待ち針) 毎35節	あり	15.0	5.6	江戸崎砂+SA400 約度調敷江百畝込	57.1	6.6	90	14.4	0.58	50	地震波(神戸波) _{振經0.7倍} 地震波(加戸波)
65		2	無対策	あり	15.0	9.9	松皮調整江戸町0 約度調整江戸崎砂	20.8	0. 2 NP	85	16.2	0.49	50	地震波(神戸波)振調0.7倍 地震波(神戸波)
66	H28	3	無対策	あり	15.0	10.3	粒度調整江戸崎砂	36.5	NP	85	15.2	0.23	50	地震波(神戸波) ##0.7倍
67		4	無対策	あり	15.0	11.3	粒度調整江戸崎砂	51.3	6.2	85	23.6	0.28	50	地震波(神戸波) _{振編0.7倍}
68		1	無対策	あり	15.0	11.4	粒度調整江戸崎砂	39.8	10.5	85	17.1	0.04	50	地震波(神戸波) _{振幅0.7倍}
69	H29	2	無対策	あり	15.0	10.9	粒度調整江戸崎砂	41.0	11.6	85	22.5	0.11	50	地震波(神戸波) _{振40.7倍}
70		3	無対策	あり	15.0	11.4	粒度調整江戸崎砂	56.1	14.1	85	20.7	0.07	50	地震波(神戸波) _{振興0.7倍}
/1		4	無対策	あり	15.0	11.0	和度調整江戸崎砂 江戸崎功	43.6	13.7	85 95	27.9	0.24	50	地展改(伊尸波) 振編0.7倍 地震波(加戸法)
73	H30	2	利東 無対策	のり あり	15.0	9.3	11.11町19 粒度調整江戸崎砂	39.8	10.5	82	10.7	3.90	50	・ビー度はX(TFT) ⁻¹ (Q) 振幅0.7倍 地震波(神戸波) section 7.00
74		1	ふとんかご	あり	15.0	5.7	江戸崎砂	16.9	-	85	16.6	0.38	50	地震波(神戸波)
75	R1	2	ふとんかご	あり	15.0	4.9	江戸崎砂	16.9	-	85	16.6	0.53	50	地震波(神戸波)
76		3	ふとんかご,宙水排水対策	あり	15.0	4.0	江戸崎砂	16.9	-	85	16.6	0.66	50	地震波(神戸波)
77	R2	1	基盤排水層,ふとんかご,水平排水層	あり	15.0	2.6	江戸崎砂	16.9	-	85	15.8	0.54	50	地震波(神戸波)
78	-	2	基盤排水層,ふとんかご	あり	15.0	2.7	江戸崎砂	16.9	-	85	15.8	0.64	50	地震波(神戸波)
/9 80		2	基盤排水増,ふとんかこ,水半排水層 毎対空	あり	15.0	4.6	江戶崎砂 江戸岐び	11.6	NP	85 0E	16.1	0.42	50	地震波(神戸波) 抽雷波(加戸ボ)
81	R3	2	無対策	のり あり	15.0	4.4	江戸崎砂	11.0	NP	60 85	10.1	0.52	50	地底(竹戸波) 地震波(神戸波)
82		4	無対策	あり	15.0	5.0	江戸崎砂	11.6	NP	85	16.1	0.49	50	地震波(神戸波)

※1 実大スケール ※2 盛土天端から給水槽水位までの深度(参考値)

2.2.2 実験ケースの目的等

以下に,各年度の実験ケースの目的等を表2.2に示す.

年度	実験の目的等
	・盛土材料の締固め度(密度)及び水位の影響を確認
H17年度	 ・対策工として、ふとんかご、段付ふとんかご、基盤排水層の効果を確認
	・法尻付近の地山の傾斜の有無の影響の確認
H18 年度	・盛土材料の締固め度(密度)及び水位の影響を確認
	・対策工として、ふとんかご、基盤排水層の効果を確認
	・盛土材料の締固め度(密度),水位,盛土高の影響を確認
山の左南	・法尻付近の地山を盛土材料と同じにした場合の影響の確認
HI9 年度	・対策工として、ふとんかご、基盤排水層の効果を確認
	・能登半島地震における盛土被害を受けて、現地から採取した盛土材料により実験
1101 年 由	 ・対策工として、ふとんかご、基盤排水層、各種押え盛土、横ボーリング、トレンチの効果を
H21 平度	確認
地的左南	 ・対策工として、ふとんかご、排水補強杭、法枠+グラウンドアンカー、基盤排水層及びこれ
n22 平皮	らを併用した実験を行い,これらの効果を確認
山の存在	・盛土材料に細粒分の多い材料(江戸崎砂+DL クレー,江戸崎砂+SA400)を用い,土の物性の
1120 平及	影響を確認
山97 年 亩	・盛土材料に細粒分の多い材料(江戸崎砂+SA400)を用い,土の物性の影響を確認
1127 平皮	 対策工として、ふとんかごの効果を確認
H28 年度	・盛土材料に細粒分の多い材料(粒度調整江戸崎砂)を用い、土の物性の影響を確認
1120 +/2	・盛土内水位,締固め時の含水比等の影響を確認
H29 年度	・盛土材料に細粒分の多い材料(粒度調整江戸崎砂)を用い、土の物性の影響を確認
1125 +/2	・盛土内水位,締固め時の含水比等の影響を確認
H30 年度	・浸透水を変えて(メトローズ水溶液,脱気水)実験を行い,透水性の相似則の影響を確認
D1 年 由	・極軟弱な難透水層上に宙水が形成される条件で実験を行い、その影響を確認
	 ・宙水を鉛直下方に排水するための鉛直ドレーンの効果を確認
	 ・セメント混合による改良を行った難透水層上に宙水が形成される条件で実験を行い、その影
R2 年度	響を確認
	・宙水を法尻方向に排水するための水平排水層(L=50mm)の効果を確認
	 ・セメント混合による改良を行った難透水層上に宙水が形成される条件で実験を行い、宙水を
R3 年度	法尻方向に排水するための水平排水層(L=100mm)の効果を確認
	・盛土厚さを3段階(150mm, 300mm, 450mm)に変化させてその影響を確認

表 2.2 各年度の実験の目的

2.3 模型の作製

2.3.1. 地山模型の作製

実験で用いた盛土背後の地山模型は、石膏、アルミ材、地盤材料で作製した. 写真 2.4~写真 2.6 に地山模型を示す.地山模型内にはあらかじめ給水用のアクリルパイプ(内径 7mm,外径 10mm) と給水槽、盛土のり尻側に排水口を設置した(写真 2.3).地山の傾斜は、土槽を傾斜させた状態 で石膏を流し込むことで作製した.また、地山と地盤の摩擦をある程度確保するため、地山表面 にサンドペーパーを貼り付けた.

写真 2.3 給水用のアクリルパイプ, 給水槽, 排水口

写真2.4 石膏を用いた地山

写真2.5 アルミ材と石膏を用いた地山

写真2.6 石膏と地盤材料を用いた地山

2.3.2. 盛土模型の作製

実験で用いた盛土模型は、江戸崎砂、DL クレー(昭和ケミカル株式会社製)、SA400(昭和 KDE 株式会社製),能登有料道路盛土材などをそのまま又は混合、粒度調整した材料を用いて作製した. **写真 2.7**に地盤の作製状況の例を示す.地盤は突固め棒により締固めて作製した.地盤の撒き出 し厚は 25mm とし、1 層作製するごとに表面を目粗して、上位層とのなじみやすくした.一層ごと に投入した地盤材料の乾燥質量と土槽上端からの高さ測定によって得られる各層の体積から、乾 燥密度を求めることにより、所定の締固め度となるように作製した.

R1~R3 年度では盛土内の宙水の影響を調べるため,難透水層を盛土内に作製した.難透水層は ベントナイト(R1年度:ベントナイト粒(有限会社アグリクリエイト製)+宇部硅砂5号A+瑞 浪硅砂6号+水,R2~R3年度:R1年度材料+湿潤重量比で1%相当の普通ポルトランドセメント) を厚さ5mmで敷設した(写真2.8).

また, 盛土内には2.7 (24~25ページ) に示す測定器を埋設した.

写真2.7 地盤の作製状況の例

写真2.8 難透水層の作製状況の例

2.3.3. メッシュと標点の設置

加振前後における地盤変形状況を観察するため, 硅砂 7 号を用いて土槽前面ガラス面に水平・ 鉛直方向のメッシュ(格子状に配置した色砂マーカー)と土槽前面ガラス面と盛土表面にアルミ 製のリベットを用いて標点を設置した. 写真 2.9, 写真 2.10 にメッシュと標点を設置した地山模 型を示す.水平方向のメッシュは, へらを用いてガラス面外側から水平性を確認しながら行った. 鉛直方向メッシュは, ガラス面内側に凹型アルミ棒を用いて硅砂 7 号を入れて作製した. 標点は, ガラス面の摩擦を極力小さくするため, グリースを塗布した.

写真 2.9 盛土模型に設置したメッシュと標点

写真 2.10 盛土表面に設定した標点

2.3.4. 対策工

実験で用いた対策工は表 2.3 のとおりである. 写真 2.11~写真 2.24 に各対策工の作製方法を 示す.実験ケースによっては,のり尻水位を調整するためにフィルター層(江戸崎砂,珪砂など) を設けているケースがある.

	工種	材料	仕様	備考
	基盤排水層	珪砂 3, 4 号	幅 30~290mm, 厚さ 10mm	写真 2.11
		砕石7号	幅 60mm, 高さ 20mm	写真 2.12
			(砕石 7 号を金網で包んだものを並べ	
			て作製)	
	ふとんかご	砕石7号	幅 60mm, 高さ 20, 30mm, 奥行き 100mm	写真 2.13
	(段付含む)		(砕石7号を金網で包んで作製)	写真 2.14
			(H27 年度 No.8 はふとんかごを打込み	
排			杭(待ち針φ0.5mm)で地山に固定)	
水	横ボーリング	珪砂3号	傾斜角 5°, 幅 10mm, 厚さ 10mm	写真 2.15
対			(ボーリング底面にビニール敷く)	
策	トレンチ	珪砂3号	-	写真 2.16
	宙水排水対策	いわき珪砂 3	直径10mm, 長さ200mm	写真 2.17
		号	(アルミパイプで削孔し,材料投入)	
			※難透水層上の水を下方に排水するた	
			めの対策工	
	水平排水層	砕石7号	幅 50, 100mm, 厚さ 7mm, 奥行き 300mm	写真 2.18
		ステンレス	(ステンレスネットに水洗いした砕石	
			を詰めて作製)	
	押え盛土	江戸崎砂	Dc=82%	写真 2.19
	押え補強盛土	江戸崎砂	間隔 20mm, 厚さ 0.5mm	写真 2.20
構		アクリル板	(幅10mm, 長さ250mmの格子あり)	
造	鋼製型枠	砕石7号	上面 20mm, 底面 42mm, 高さ 60mm	写真 2.21
的	排水補強杭	アルミパイプ	直径 6mm, 肉厚 1mm, 長さ 400mm	写真 2.22
対			(パイプ表面には直径 2mm の排水用の	
策			穴を適当な間隔で穿孔)	
	のり枠	アクリル板	厚さ3mm	写真 2.23
	グラウンドアンカー	ワイヤー	直径 0.7mm(地山に埋め込んで固定)	写真 2.24

表 2.3 対策工種および仕様等の一覧

写真 2.11 基盤排水層(珪砂)

写真 2.12 基盤排水層(砕石)

写真 2.13 ふとんかご (左:段付なし,右:段付あり)

写真 2.14 ふとんかご+打込み杭

写真 2.15 横ボーリング

写真 2.16 トレンチ

写真 2.17 宙水排水対策

写真 2.18 水平排水層

写真 2.19 押え盛土

写真 2.20 押え補強盛土

写真 2.21 鋼製型枠

写真 2.22 排水補強杭

写真 2.23 のり枠

写真2.24 グラウンドアンカー

2.4 土質試験

実験で用いた盛土材料の物理試験結果および力学試験結果の一覧を表 2.4,表 2.5 に示す.また,各材料の粒径加積曲線と締固め曲線については図 2.1~図 2.21 に示す.

実験実施年度			H17	H18		H19		H21~22	H22			H26		
地盤材料			江戸崎砂	砂 江戸崎砂 注		江戸崎砂	能登土	江戸崎砂	試料A	試料B	試料C	珪砂7号+ DLクレー	江戸崎砂+ DLクレー	
	土粒子の密度ρ。	(g/cm ³)		2.683	2. (657	2.732	2.696	2.734	2.659	2.678	2.668	2.665	2.681
		礫分含有率(%)	0.0	0.	. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		砂分含有率(%)	91.9	93	. 1	90.6	22.4	90.8	78.8	64.3	45.1	48.5	56.5
	約度	シルト分含有	率(%)	6.0	6	0	7.0	46.2	0.2	11.5	24.8	47.4	44.7	36.4
	4±1,2	粘土分含有率	(%)	2.1	0.	0.9		31.4	3.2	9.7	10.9	7.5	6.8	7.1
44		均等係数U。		3.19	2.	91	3.91	-	3.98	34.70	35.00	12.30	11.60	15.83
物理		平均粒径D ₅₀ (mm)		0.253	0. :	228	0.278	0.018	0.284	0.161	0.119	0.064	0.070	0.113
特性		液性限界W _L (%) 塑性限界W _p (%)		-		-		62.1	-	-	-	-	-	NP
	コンシス テンシー			-	-		-	32. 3	-	-	-	-	-	NP
		塑性指数Ip		-	-		-	29.8	-	-	-	-	-	-
	締因め	最大乾燥密度 p dmax (g/cm ³)		1.650	1.604		1.605	1.318	1.625	1.662	1.639	1.526	1.757	1.785
	*#101.07	最適含水比W _{opt} (%)		15.0	16.7		18.1	31.1	16.9	15.8	16.1	21.3	14.3	11.8
	家庄	最大乾燥密度 p dmax (g/cm ³)		-	1.0	1.651		-	1.621	-	-	-	-	-
	山皮	最小乾燥密度 ρ dmin(g/cm³)		-	1. :	268	-	-	1.280	-	-	-	-	-
	i	締固め度Dc(%)		90	85	90	82	82	82	89	91	90	90	90
		試験条件		CD	CD	CD	CD	CUB	CD	-	-	-	CUB	CUB
カ		全広力	c(kN/m²)	2.9	1.1	2.5	2.5	2.5	0.3	-	-	-	-	11.8
字特	せん断	±1075	φ(°)	36.3	33. 9	35.7	32.6	11.7	32.5	-	-	-	-	11.9
性		有効広力	c'(kN/m²)	-	-	-	-	2.8	-	-	-	-	2.1	8.9
		C (040 E	φ'(°)	-	-	-	-	23. 9	-	-	-	-	33.8	19.3
	繰返しせん断 液状化強度比R _{L20}			-	0.13	0.16	0.11	0.19	0.13	0.14	0.15	0.17	-	-
	備考									材料不明	材料不明	材料不明		

表 2.4 土質試験結果の一覧(1/2)

表 2.5 土質試験結果の一覧(2/2)

実験実施年度			H26~27		Н	28		H29	~30	H	29	H30	R1~2	R3	
地盤材料			江戸崎砂+ SA400	粒度調整 江戸崎砂 (Fc50)		粒度調整 江戸崎砂 (Fc30)	粒度調整 江戸崎砂 (Fc10)	粒度 江戸	粒度調整 江戸崎砂 A		調整 崎砂 B	江戸崎砂	江戸崎砂	江戸崎砂	
	土粒子の密度ρ。	(g/cm ³)		2.688	2.	2.712		2.728	2.762	2.729	2.744	2.747	2.701	2.687	2.680
		礫分含有率(%)	0.0	0.	. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		砂分含有率 (%)	42.9	48	. 7	63.5	79.2	60.2	58.9	43.9	56.5	86.1	83.1	88.4
	粉座	シルト分含有	率(%)	30.7	38	. 0	26.5	10.9	32.7	33.8	50.6	34.4	7.5	11.5	5.8
	和皮	粘土分含有率(%)		26.4	13	. 3	10.0	9.9	7.1	7.2	5.5	9.2	6.4	5.4	5.8
		均等係数U。		90.00		-	38.80	45.55	9.91	10.19	4.96	13.97	9.12	6.21	4.00
物理		平均粒径D ₅₀ (m	m)	0.022	0.	072	0.132	0.194	0.099	0.093	0.069	0.086	0.200	0.150	0.201
特性		液性限界WL(%)		24.3	28	. 5	NP	NP	29.9	31.0	35.1	33. 9	-	-	NP
	コンシス テンシー	塑性限界W _p (%)		17.7	22. 3		NP	NP	19.3	19.4	21.0	20. 2	-	-	NP
		塑性指数I _p		6.6	6.	. 2	-	-	10.5	11.6	14.1	13.7	-	-	-
	統用め	最大乾燥密度ρdmax(g/cm ³)		1.827	1.664		1.696	1.718	1.	693	1.	558	1.652	1.676	1.672
	^{耕固 85} 最適含水比		st (%)	13.7	17.6		15.0	16.3	17.1		20	.0	15.9	17.1	17.2
	索由	最大乾燥密度ρdmax(g/cm³)		-		-	-	-	-	-	-	-	-	-	1.440
	密度 最小乾燥密度 p dmin (g/cm		ρdmin(g/cm³)	-		-	-	-	-	-	-	-	-	-	1.100
	i	締固め度Dc(%)		90	85	85,Va15	85	85	-	-	85	85,Va15	90	-	85
		試験条件		CUB	CUB	CUB	-	CUB	-	-	CUB	-	CD	-	-
Ъ		全広 市	c(kN/m²)	1.3	3.8	0.0	-	72.5	-	-	4.0	-	11.7	-	-
学特	せん断	エルハ	φ(°)	9.9	10.9	13.9	-	9.0	-	-	11.9	-	33.0	-	-
性		有効広力	c'(kN/m²)	0.0	1.7	0.1	-	13.0	-	-	0.6	-	-	-	-
		CL ONLY H	φ'(°)	23. 1	22.9	32.7	-	30.6	-	-	25.9	-	-	-	-
	繰返しせん断 液状化強度比R _{L20}		-	0.14	-	0.14	0.17	-	-	-	0.14	-	-	0.20	
	備考				H28-No. 1	H28-No. 4	H28-No. 3	H28-No. 2	H29-No. 1	H29-No. 2	H29-No. 3	H29-No. 4			

図 2.2 粒径加積曲線・締固め曲線(H18 江戸崎砂)

図 2.3 粒径加積曲線・締固め曲線(H19 江戸崎砂)

図 2.5 粒径加積曲線・締固め曲線(H21~22 江戸崎砂)

図 2.6 粒径加積曲線・締固め曲線(H22 試料 A)

図 2.8 粒径加積曲線・締固め曲線(H22 試料 C)

図 2.11 粒径加積曲線・締固め曲線(H26~27 江戸崎砂+SA400)

図 2.14 粒径加積曲線・締固め曲線(H28 粒度調整江戸崎砂(Fc10))

図 2.15 粒径加積曲線・締固め曲線(H29~30 粒度調整江戸崎砂 A(Case1))

図 2.16 粒径加積曲線・締固め曲線(H29~30 粒度調整江戸崎砂 A(Case2))

図 2.17 粒径加積曲線・締固め曲線(H29 粒度調整江戸崎砂 B(Case3))

図 2.18 粒径加積曲線・締固め曲線(H29 粒度調整江戸崎砂 B(Case4))

図 2.20 粒径加積曲線・締固め曲線(R1~2 江戸崎砂)

図 2.21 粒径加積曲線・締固め曲線(R3 江戸崎砂)

2.5 模型実験の手順

模型実験の手順は主に以下のとおりである.

(1) 罫書き

模型地盤の形状に応じて, 土槽側面に罫書きを行った.

(2) 地山の作製

土槽内に給水用のアクリルパイプ,給水槽,排水口を設置した状態で,石膏,アルミ材等で 地山模型を作製した.地山表面には摩擦をある程度確保するため,地山表面にサンドペーパ ーを貼り付けた.

- (3) 地盤の作製地盤材料を巻出し厚 25mm で1層ごとに密度管理しながら突固めを行った.
- (4) 測定器,対策工の設置
 地盤内の所定位置に測定器(加速度計,間隙水圧計,土壌水分計,土圧計)を埋設,地表面に
 変位計を治具によって土槽に固定した.また,地盤内,のり面等に対策工を設置した.
- (5) 振動台への設置 模型地盤作製後,土槽を振動台に固定した.
- (6) 遠心力の上昇

遠心力を 5G/min を基本として上昇させて, 50G または 75G まで載荷した.

(7) 浸透水の通水

所定の遠心力載荷後に給水槽内に所定の水位まで給水し,地盤内に取り付けた注水パイプを 通して,水頭差により浸透水を地盤内に供給した(給水はH30年度まではレギュレータの手 動操作,それ以降は電磁バルブと制御装置による自動操作).浸透水としては,実験条件に応 じて,メトローズ水溶液(信越化学工業株式会社製,メチルセルロース),脱気水を用いた(表 2.6).以下に各浸透水の仕様を示す.また,注水時間は目標水位や定常水位などの供給条件 によって変化させた.

浸透水	仕様	備考
メトローズ水溶液	水の粘性の 50 倍または 75 倍になるように粘性	相似則に応じて粘性
	調整した浸透水(外気温に応じてメトローズの	を調整
	混入率を変化(例:外気温 28℃で混入率 2.30%))	
脱気水	脱気槽で水道水を脱気	細粒分が多く浸透し
		にくい場合に使用

表2.6 浸透水の仕様

(8) 加振

あらかじめ作成した加振波形を用いて加振を行った.

(9) 模型解体

加振終了後,遠心力を除荷し,実験を終了した.遠心力は 10G/min を基本として除荷した. 実験後の模型地盤表面の形状を測量(レーザー変位計による測定)した.

2.6 加振条件

本実験で用いた加振波形の例を図2.22にまとめる.加振波形は地震波とし、レベル2地震動の ような大規模地震動が作用した際の盛土の挙動を把握する把握するため、道路橋示方書 V 耐震設 計編に示されるレベル2 地震動を用いて加振を行った.

このうち,神戸海洋気象台 N-S 波(以下,神戸波)については,一部の年度で振動台の変位制 限等の関係で,振幅を 0.7 倍して加振した.

図 2.22 加振波形の例 (実大スケール)

2.7 測定

実験で用いた各測定器の仕様,設置位置は以下のとおりである.また,測定器の極性を表2.7に まとめた.

(1) 加速度

模型地盤,加振テーブルおよび土槽底面の加速度を測定した.加速度計(寸法:4.6×4.6×15mm, 容量:2006,写真2.25)は、入力波の確認用に加振テーブルと土槽底面、模型地盤内の応答を測 定できる位置に設置した.また、模型地盤の応答に追随するように、アクリル製の台座に接着剤 によって貼り付け、その台座と共に模型地盤内に埋設した.

(2) 変位

模型地盤の変位を測定した.変位計(主な容量:70~450mmのレーザー式変位計,30~100mmの ポテンショメータ,**写真 2.29**)は,盛土表面(主に盛土のり肩,天端,のり尻等)の鉛直・水平 方向の変形を測定できる位置に設置した.

(3) 間隙水圧

模型地盤内および給水槽内の間隙水圧を測定した.間隙水圧計(寸法:φ8,10mm,容量:500kPa, 写真2.26)は、給水槽内の水位調整、模型地盤内の水圧を測定できる位置に設置した.

(4) 土圧

-部ケースにおいて,模型地盤内の水平・鉛直土圧を測定した.土圧計(寸法:φ6.0mm,容量: 200kPa, 500kPa, 2000kPa, **写真 2.27**)は、模型地盤内の土圧を測定できる位置に設置した.

(5) 土壤水分

一部ケースにおいて,模型地盤の土壌水分を測定した.土壌水分計(寸法:8.9×1.8×0.7cm, 容量:0~100%,写真2.28)は、模型地盤の飽和度を確認できる模型地盤の下方に設置した.

測定項	目	定義
加速度		土槽右方向への加速が正
亦占	水平	土槽右方向への変位が正
<u>爱</u> 型	鉛直	沈下方向が正
間隙水圧		加圧方向が正
上厅	水平	圧縮が正
	鉛直	圧縮が正
土壤水分		-

表 2.7 測定器の極性

写真 2.25 加速度計

写真 2.26 間隙水圧計

写真 2.27 土圧計

写真 2.28 土壌水分計

写真 2.29 変位計(左:ポテンショメータ,右:レーザー式)

3. 実験条件および結果

実験条件,実験供試体,浸透水位,外力条件,結果等を表 3.2~表 3.165 にまとめた. 各整理項目の条件等は表 3.1 のとおりである.

	項	目	実験過程	スケール	内容				
1444-	土槽		_	-	実験に用いた土槽の種類				
限	遠心加速		-	-	目標遠心加速度				
望	間隙水		-	_	盛土内に通水する間隙水の種類				
	高さ		_	模型,実大 の両方	盛土高さ				
	締固め度		-	_	実験の目標締固め度				
	締固め含れ	水比	地盤作製時	_	地盤作製時の含水比				
	材料		_	_	実験に用いた盛土材料				
	相対密度		-	_	地盤作製時の乾燥密度と砂の最大密度・ 最小密度試験結果から算出				
	乾燥密度		地盤作製時	_	地盤作製時の乾燥密度				
盛土	給水槽水(<u>.</u>	加振直前	模型,実大 の両方	盛土天端から給水槽水位までの深度.給 水槽内の間隙水圧計から算出または目標 値を記載				
	塑性指数		_	_	土質試験結果を記載				
	細粒分含	有率	-	_	土質試験結果を記載				
	特記事項		_	_	以下に該当する場合に記載 ・のり尻部の地山に傾斜がある ・盛土底面地山が地盤材料である ・盛土天端幅が 300mm 以外である ・難透水層がある				
対領	 6工		-	_	表 2.3 に示す対策工				
実懸	食供試体		地盤作製前	模型	実験供試体の計画図				
盛-	上内水位		加振直前	-	間隙水圧計,高速度カメラ画像から算定 した加振直前の水位				
外ナ	方条件		加振中	模型,実大 または両方	土槽底面と盛土天端付近に設置した加速 度計の測定波形と最大加速度				
	側面	加振前	加振直前	模型	加振直前の高速度カメラ画像				
	画像	加振後	加振直後	模型	加振直後の高速度カメラ画像				
	標点·	加振前	加振直前	模型	加振直前の高速度カメラ画像から標点・ メッシュの座標を読み取り作成				
実	メッシュ	加振後	加振直後	模型	加振直後の高速度カメラ画像から標点・ メッシュの座標を読み取り作成				
験結		レーザー変 位計	加振直後		加振後のレーザー変位計の測定結果 ※「-」はレンジオーバーのためデータなし				
果	亦形是	画像解析	加振直後	模型, 実大	高速度カメラ画像から読み取った変形量 ※「-」は読み取り不可のためデータなし				
	炎 形量	地表面標点	実験後の 16 場	または両方	実験後の1G場の標点測定結果 ※複数回のステップ加振のうち、1ステップ 目の測定結果がないケースは除外 ※「-」は測定なし、対象箇所データなし等				

表3.1 各整理項目の条件等

表 3.2 実験条件(H17-No.1)

表 3.3 実験結果(H17-No.1)

表 3.4 実験条件(H17-No.2)

表 3.5 実験結果(H17-No.2)

表 3.6 実験条件(H17-No.3)

表 3.7 実験結果(H17-No.3)

表 3.8 実験条件(H17-No.4)

表 3.9 実験結果(H17-No.4)

表 3.10 実験条件(H17-No.5)

表 3.11 実験結果(H17-No.5)

表 3.12 実験条件(H18-No.1)

表 3.13 実験結果(H18-No.1)

表 3.14 実験条件(H18-No.2)

表 3.15 実験結果(H18-No.2)

年度	H18 No.				3		
模型	土槽	大型	遠心加速度	50G	間隙水	メトローズ	
	高さ※①内は実大	300mm (15m)	締固め度	85%	締固め含水比	16. 7%	
盛土	材料	江戸崎砂	相対密度	32. 1%	乾燥密度	1.370g/cm ³	
※物性は	給水槽水位	天端-10mm(0.5m)	塑性指数	-	細粒分含有率	6.9%	
p. 14	特記事項						
· 対策工 無対策							
●実験供試体(模型スケール単位:mn) ●実験供試体(模型スケール単位:mn) ● 100							
				50			
外力条件							
●加振加速度							
入力波	加速 :形		(gal) (g 25)	White Manharman	Merel Marine Contraction of Contract		
	度計	(+) $(-)$	概 戦 戦 号 ⁻²⁵	A Mahlelense			
地震》	皮 AU2 A10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.3) -50 9.7) -50	0.2	0.4 0.6 時間 (sec)	0.8 1.0	
(神戸)	皮) A11	30. 8 (604. 3) 22. 5 (44)	1.5) ⁵⁰ ⁴¹⁰				
$\begin{bmatrix} & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & $							

表 3.16 実験条件(H18-No.3)

表 3.17 実験結果(H18-No.3)

表 3.18 実験条件(H18-No.4)

表 3.19 実験結果(H18-No.4)

表 3.20 実験条件(H18-No.5)

表 3.21 実験結果(H18-No.5)

表 3.22 実験条件(H18-No.6)

表 3.24 実験条件(H18-No.7)

表 3.25 実験結果(H18-No.7)

表 3.26 実験条件(H18-No.8)

表 3.27 実験結果(H18-No.8)

表 3.28 実験条件(H18-No.9)

表 3.29 実験結果(H18-No.9)

表 3.30 実験条件(H18-No.10)

表 3.31 実験結果(H18-No.10)

表 3.32 実験条件(H19-No.1)

表 3.33 実験結果(H19-No.1)

表 3.34 実験条件(H19-No.2)

表 3.35 実験結果(H19-No.2)

表 3.36 実験条件(H19-No.3)

表 3.37 実験結果(H19-No.3)

表 3.38 実験条件(H19-No.4)

表 3.39 実験結果(H19-No.4)

表 3.40 実験条件(H19-No.5)

表 3.41 実験結果(H19-No.5)

表 3.42 実験条件(H19-No.6)

表 3.43 実験結果(H19-No.6)

表 3.44 実験条件(H19-No.7)

表 3.46 実験条件(H19-No.8)

表 3.47 実験結果(H19-No.8)

表 3.48 実験条件(H19-No.9)

表 3.49 実験結果(H19-No.9)

表 3.50 実験条件(H19-No.10)

表 3.51 実験結果(H19-No.10)

表 3.52 実験条件(H19-No.11)

表 3.53 実験結果(H19-No.11)

表 3.54 実験条件(H19-No.12)

表 3.55 実験結果(H19-No.12)

表 3.56 実験条件(H21-No.1)

表 3.57 実験結果(H21-No.1)

表 3.58 実験条件(H21-No.2)

表 3.60 実験条件(H21-No.3)

表 3.61 実験結果(H21-No.3)

表 3.62 実験条件(H21-No.4)

表 3.63 実験結果(H21-No.4)

表 3.64 実験条件(H21-No.5)

表 3.65 実験結果(H21-No.5)

表 3.66 実験条件(H21-No.6)

表 3.67 実験結果(H21-No.6)

表 3.68 実験条件(H21-No.7)

表 3.69 実験結果(H21-No.7)

表 3.70 実験条件(H21-No.8)

表 3.71 実験結果(H21-No.8)

表 3.72 実験条件(H21-No.9)

表 3.73 実験結果(H21-No.9)

表 3.74 実験条件(H21-No.10)

表 3.75 実験結果(H21-No.10)

表 3.76 実験条件(H21-No.11)

表 3.77 実験結果(H21-No.11)

表 3.78 実験条件(H21-No.12)

表 3.79 実験結果(H21-No.12)

表 3.80 実験条件(H22-No.1)

表 3.81 実験結果(H22-No.1)

表 3.82 実験条件(H22-No.2)

表 3.83 実験結果(H22-No.2)

表 3.84 実験条件(H22-No.3)

表 3.85 実験結果(H22-No.3)

表 3.86 実験条件(H22-No.4)

表 3.87 実験結果(H22-No.4)

表 3.88 実験条件(H22-No.5)

表 3.90 実験条件(H22-No.6)

表 3.92 実験条件(H22-No.7)

表 3.93 実験結果(H22-No.7)

表 3.94 実験条件(H22-No.8)

表 3.95 実験結果(H22-No.8)

表 3.96 実験条件(H26-No.1)

表 3.97 実験結果(H26-No.1)

表 3.98 実験条件(H26-No.2)

表 3.100 実験条件(H26-No.3)

表 3.101 実験結果(H26-No.3)

表 3.102 実験条件(H26-No.4)

表 3.103 実験結果(H26-No.4)

表 3.104 実験条件(H26-No.5)

表 3.105 実験結果(H26-No.5)

表 3.106 実験条件(H26-No.6)

表 3.107 実験結果(H26-No.6)

表 3.108 実験条件(H26-No.7)

表 3.109 実験結果(H26-No.7)

表 3.110 実験条件(H26-No.8)

表 3.111 実験結果(H26-No.8)

表 3.112 実験条件(H27-No.1)

表 3.113 実験結果(H27-No.1)

表 3.114 実験条件(H27-No.2)

表 3.115 実験結果(H27-No.2)

表 3.116 実験条件(H27-No.3)

表 3.117 実験結果(H27-No.3)

表 3.118 実験条件(H27-No.4)

表 3.119 実験結果(H27-No.4)

表 3.120 実験条件(H27-No.5)

表 3.121 実験結果(H27-No.5)

表 3.122 実験条件(H27-No.6)

表 3.123 実験結果(H27-No.6)

表 3.124 実験条件(H27-No.7)

表 3.125 実験結果(H27-No.7)

表 3.126 実験条件(H27-No.8)

表 3.127 実験結果(H27-No.8)

表 3.128 実験条件(H28-No.1)

表 3.129 実験結果(H28-No.1)

表 3.130 実験条件(H28-No.2)

表 3.131 実験結果(H28-No.2)

表 3.132 実験条件(H28-No.3)

表 3.133 実験結果(H28-No.3)

表 3.134 実験条件(H28-No.4)

表 3.135 実験結果(H28-No.4)

表 3.136 実験条件(H29-No.1)

表 3.137 実験結果(H29-No.1)

表 3.138 実験条件(H29-No.2)

表 3.139 実験結果(H29-No.2)

表 3.140 実験条件(H29-No.3)

表 3.141 実験結果(H29-No.3)

表 3.142 実験条件(H29-No.4)

表 3.144 実験条件(H30-No.1)

表 3.145 実験結果(H30-No.1)

表 3.146 実験条件(H30-No.2)

表 3.148 実験条件(R1-No.1)

表 3.149 実験結果 (R1-No.1)

表 3.150 実験条件(R1-No.2)

表 3.151 実験結果 (R1-No.2)

表 3.152 実験条件(R1-No.3)

表 3.153 実験結果 (R1-No.3)

表 3.154 実験条件(R2-No.1)

宝融丝甲					
天歌和木	おり				
●側面画像(加振·	後)				
メッシュ ・ 標点					
 □ □					
·····································					
計測方法	DV5(のり高速下)	<u> のいまます</u> DV4(天端山央沈下)	DH1(盛十1/3小段)		
	0, 54m	0. 23m	0, 19m		
画像解析	0 55m	0 15m			
	0. 55m	0. 20m	0. 20m		

表 3.155 実験結果(R2-No.1)

表 3.156 実験条件(R2-No.2)

表 3.157 実験結果 (R2-No.2)

表 3.158 実験条件(R3-No.1)

表 3.159 実験結果(R3-No.1)

表 3.160 実験条件(R3-No.2)

中時姓田	<u>A</u> 0.101				
天殿和朱	₹ \\\}				
 ●側面画像(浸) ●側面画像(浸) 	查前)				
●標点・メッシュ(浸透前)					
メッシュ ・ 標点					
●標点 ・メッシ <u>-</u>	1(浸透後)				
	変形 量 _{※実大}				
計測万法	DV4(のり面)	DV3(天端中央沈下)	DH1(盛土 1/3 小段)		
レーザー変位計	0.06m	0. 08m	0. 61m		
画像解析	0. 52m	0. 07m	0. 81m		
地表面標点	0. 40m	0. 50m	0. 70m		

表 3.161 実験結果(R3-No.2)

表 3.162 実験条件(R3-No.3)

表 3.163 実験結果(R3-No.3)

表 3.164 実験条件(R4-No.4)

表 3.165 実験結果 (R3-No.4)

4. データ集について

実験で得られたデータを巻末 CD に格納した.データ集の構成は表4.1 のとおりである.

フォ	ファイルタサレ内容			
フォルダ1	フォルダ2	ファイル拡張子	ノナイル石柳と的谷	
動的遠心模型実験のデータ	—	docx	H17年度~R3年度遠心力載荷実験結果	
		xlsx	①実験ケース一覧	
		xlsx	②土質試験結果	
動的遠心模型実験の主要データ		xlsx	③測定変形量データ	
		xlsx	④画像解析による変形量データ	
		xlsx	⑤地表面標点データ	
	時刻歴データ	CSV	No.1~No.82時刻歴データ (遠心上昇or水位上昇)	
動的遠心模型実験の計測データ		CSV	No. 1~No. 82時刻歴データ (加振)	
	高速度カメラ画像	jpg	No. 1~No. 82高速度カメラ画像 (加振前・加振後)	

表 4.1 データ集の構成

土木研究所資料 TECHNICAL NOTE of PWRI No.4427 JULY 2022

編集·発行 ©国立研究開発法人土木研究所

本資料の転載・複写のお問い合わせは

国立研究開発法人土木研究所 企画部 業務課 〒305-8516 茨城県つくば市南原 1-6 電話 029-879-6754