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ABSTRACT 

Whenever a natural disaster occurs, it is important to quickly evaluate the damage status in high-priority 

locations. Frequently, owing to the restrictions imposed by the availability of disaster management 

resources, spatial information is predicted where the infrastructure manager makes an initial response. It 

is critical that an initial response be effective to mitigate social losses. In recent years, Japan has 

experienced several great earthquakes with magnitudes of around 6, most notably the Great East Japan 

earthquake of March 2011 (M9), as well as those striking Kumamoto (April 2016 (M7)), Osaka (June 

2018 (M6.1), and Hokkaido (September 2018 (M6.7)). These huge earthquakes occur not only in Japan 

but around the world, with an earthquake and tsunami striking Indonesia as recently as October 2018. 

The initial response to future earthquakes is an important issue related to knowledge of natural disasters 

and to predict the degree of damage to infrastructure using multi-mode usable data sources. In Japan, 

approximately 5 million CCTV cameras are installed. The Ministry of Land, Infrastructure and 

Transportation uses 23,000 of these cameras to monitor the infrastructure in each region. This paper 

proposes a feature extraction damage classification model using disaster images with five classes of 

damage after the occurrence of a huge earthquake. We present a support vector damage classifier for 

which the inputs are the extracted damage features, such as tsunami, bridge collapses, and road damage 

leading to a risk of accidents, initial smoke and fire, and non-disaster damage. The total number of 

images is 1,117, which we collected from relevant websites that allow us to download records of huge 

earthquake damage that has occurred worldwide. Using ten pre-trained architectures, we have extracted 

the damage features and constructed a support vector classification model with a radial basis function, 

for which the hyper parameters optimize the results to minimize the loss function value with an accuracy 

of 97.50%, based on the DenseNet-201. This would provide us with further opportunities for disaster data 

mining and localized detection. 
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1. INTRODUCTION 

This section reviews the related papers and works related to natural disaster management and 

machine learning for disaster data resources. The authors highlight earthquake disasters and the 

mining of five classes of earthquake damage data sets. 

1.1. Literatures related to disaster management 

Manzhu et al. [1] reviewed the major big data sources and the associated achievements in 

disaster management phases to monitor and detect natural hazards, and to mitigate disaster 

damage, as well as the recovery and reconstruction processes. This paper focuses on the urgent 

response phase after an earthquake in which damage is monitored and detected to make the 
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decisions needed to address initial rapid actions regarding high priority infrastructures such as 

roads, intersections, bridges, river gates, and urban and rural areas. During 2014–2016, a variety 

of data sources could be observed in articles, when the topic of big data was popular in disaster 

management. These data sources are as follows: satellite, social media, crowd sourcing, sensor 

web and IoT, mobile GPS, simulation, unmanned aerial vehicles (UAV), Light Detection and 

Ranging (LiDAR), and spatial data. Among these digital data sources, satellite imagery [2][3] 

and social media [4][5] data serve as the most popular data for disaster management. 

However, a satellite used for remote sensing always moves slowly, such that there is a delay 

between the times at which data is acquired. The resulting series of photographs is thus not 

useful for recognizing earthquake features. Therefore, disaster detection can be done based on 

social media: Twitter is used as a source of text mining, and spatial temporal analysis. However, 

social media users cannot always monitor disaster damage accurately. Also, users tend to be 

agitated and fearful for their safety after the occurrence of a huge earthquake. Messages 

sometimes lack essential details owing to noise and may start false rumors. Therefore, this study 

focuses on closed-circuit television (CCTV) data sources for monitoring damage to critical 

infrastructure in order to make decisions related to high-priority responses.      

1.2. Works related to disaster images 

CCTV cameras are being set up around real-world places such as houses for crime prevention, 

industrial processes to detect anomalies, banks for security, shopping stores, schools, rail 

stations for safety, traffic monitoring, sports events, and offices to monitor employees. CCTV, 

also known as video surveillance, involves the use of video cameras to transmit a signal to a 

specific place with a set of monitors. The first CCTV system was installed by Siemens AG at 

Test Stand VII in Nazi Germany in 1942 for observing rockets [6]. The earliest video 

surveillance systems involved constant monitoring because there was no means of recording 

and storing the information. A modern machine vision system enables the constant monitoring 

of infrastructures and determine whether earthquake disaster damage has occurred, with several 

cameras recording simultaneously, with features such as time lapse and motion-activated 

recording. The resulting savings in time and cost had resulted in an increase in the use of CCTV. 

Recently, CCTV technology has been enhanced with a shift towards Internet-based products. 

There were an estimated 350 million surveillance cameras worldwide as of 2016, compared 

with 160 million in 2012 [7]. Sixty-five percent of the CCTV cameras installed around the 

world are in Asia. There are currently five million CCTV cameras installed in Japan. This 

enables the creation of systems to support decisions related to immediate initial responses with 

respect to high-priority locations if a large earthquake were to occur. 

As a low level approach, both the input and output are images, with several techniques for 

analyzing changes that are detected after a disaster. Supannee et al. [8] presented a building 

detection process that could detect damage to both small and large buildings with 75% accuracy. 

That method was applied to obtain data from the 2004 tsunami that struck the coast of Thailand. 

However, only one class of building was analyzed and the satellite images, which were limited 

to the coastal area, had a 1-meter resolution. Ranga et al. [9] presented a probabilistic detection 

system that provides information regarding changes in an area and which minimizes the post-

detection threshold procedure often required in traditional change-detection algorithms. 

However, their method was intended for land use detection such as growth, loss, and no change. 

Maeda et al. [10] proposed a method that uses CCTV images with reduced background noise 

and subtracts the change between the ex ante and ex post when an earthquake occurs. A low-

level application contains simple algorithms that may be unstable and not highly accurate. This 

method has certain disadvantages, making it important to optimize the thresholding parameter 

and the balancing trade-off between the damaged signal and the background noise detection.     



 

 

On the other hand, as a high-level approach of a level equal to human vision, Kataoka et al.[11] 

surveyed 1,600 studies of computer vision and devised the concept of semantic change 

detection regardless of whether a building is damaged or not after an earthquake. However, that 

conceptual method requires hundreds of thousands or even millions of disaster-image datasets; 

further, there is no proof of the concept of semantic segmentation focusing on buildings and 

change detection regarding damaged buildings. Also, we cannot obtain a middle-level 

application to classify earthquake disaster images, owing to the lack of datasets addressing the 

instant at which an earthquake occurs.  The present study addressed middle-level image analysis 

where the input is CCTV images in the order of thousands, and the output is disaster-class labels 

for decision support with respect to the initial response to be applied to high-priority locations. 

 

Figure 1.  A thumbnail of QuakeV datasets randomly chosen 100 images  

1.3. Mining of earthquake damage datasets 

With regard to disaster image datasets, NOAA [12] offers a natural-hazard image database with 

1,163 photo images of 67 earthquake events that have occurred in the 100 years from 1915 to 

2015. It enables the viewing of a gallery of images from each earthquake event. The database 

includes earthquake disaster images from around the world, including the USA, Mexico, 

Guatemala, Colombia, Nicaragua, Peru, Chile, Haiti, Ecuador, Russia, Iran, Turkey, Pakistan, 

Algeria, Romania, Italy, Papua New Guinea, Australia, New Zealand, Samoa, China, Indonesia, 

Taiwan, and Japan. However, the viewpoints differ, such as satellite images with low resolution, 

airplane downward views, views of damage captured outdoors and indoors, as well as of 

destroyed homes. In short, their focuses and viewpoints are wide ranging, while the privately 

captured historical photos were taken without any unified rules. For each event, there are only a 



 

 

limited number of images at the half 30 earthquake events on that database. Almost all of the 

images were recorded after the earthquakes had occurred, while it took more than one week for 

academic surveys to obtain the relevant data. We attempted to collect open-source web pages 

from which earthquake damage images could be downloaded.   

This paper highlights four earthquake disaster features such as tsunami damage, bridge 

collapses, road damage giving rise to accident risks, and initial smoke and fire. The total 

number of earthquake disaster feature datasets collected by the authors was 1,117. This paper 

focuses on earthquake images, which we used to build a dataset named QuakeV. Figure 1 shows 

thumbnails of the earthquake damage image dataset for which the validation data are randomly 

chosen with 100 images of each of the above classes.   

2. DISASTER DAMAGE CLASSIFICATION 

This section proposes a means of disaster damage classification using image data sets. The 

disaster damage data are extracted into features using a pre-trained deep network. The features 

output from a concatenated layer are used as an input to the support vector classification model 

with more than two classes. To minimize the prediction error, the authors applied a Bayesian 

optimization method for hyper parameters to enable a warm start based on the result of previous 

training runs.  

 

Figure 2.  Disaster features are extracted using pre-trained network, whose features are used as 

an input for classifier incorporating a single layer, and multiple layers at concatenated points. 

2.1. Feature extraction using pre-trained networks 

Feature extraction is commonly used in machine-learning applications. We can consider a pre-

trained network and use it as an input feature to learn a classification task. Image classification 

using feature extraction is usually much faster and less demanding of computing resources than 

a transfer learning process involving the tuning of weights and biases in the deep layers. We can 

rapidly construct a classifier for a new task using an extracted feature at the concatenated layer 

as a training column vector [13]. This paper proposes a support vector classification model 

using a single layer obtained from concatenated feature extraction. Furthermore, we provide a 

classification model using multiple layers from several extracted features at significant 

concatenation points. We are able to load the pre-trained network such as AlexNet [14], 



 

 

GoogleNet [15], VGG16 and VGG19 [16], ResNet18, ResNet50 and ResNet101 [17], Inception 

v3 [18], Inception-ResNet-v2 [19], and DenseNet-201 [20]. The features output from a 

concatenated layer are used as the input to the support vector classification model with several 

disaster damage classes.  

2.2. Support vector classifier with multiple damage classes 

Assume that there are multiple disaster feature classes for a support vector classification model. 

In multiple classification models with more than two classes, we use a voting strategy [21][22]: 

each binary classification is considered to be voting where votes can be for all data points, a 

point is designated to be in a class with the maximum number of votes. The LIBSVM rapid 

library implements a one-to-one approach for multi-class classification. Many other methods are 

available for multi-class support vector classification [21][22]. The present study used a kernel 

with a radial basis function with a gamma parameter. For the image classification, the number 

of extracted features is always a large number. In the present study, there is a maximum number 

of instances for which the number of disaster-feature column vectors is 400,000. For the 

earthquake damage data set that we examined, the support vector classification method 

confirmed the preferred advantages of speed and accuracy compared with other classification 

methods such as k-nearest neighbor, decision tree, random forest, and boosting method. A 

support vector classifier was constructed using extracted disaster features based on the above 

pre-trained networks.  

2.3. Hyper parameter optimization to minimize error 

Automated machine-learning methods use Bayesian optimization to tune the hyper parameters 

of a machine-learning pipeline. We can implement libraries such as Auto-WEKA, auto-sklearn, 

Auto-Model, and so forth [23][24]. Grid search and randomized search do not use the 

information produced by previous training runs, which is disadvantageous to Bayesian-based 

optimization methods. Bayesian-based optimization methods leverage the information gained 

from previous training runs to determine the hyper-parameter values for the next training run 

and to navigate through the hyper parameter space in a smarter way. The basic idea of warm 

start is to use the information gained from previous training runs to identify better starting 

points for the next training run. When we are building machine learning models, a loss function 

helps us to minimize the prediction error during the training phase.  

The authors propose a Bayesian optimization method for which the objective function is a loss 

function from five-fold cross validation to minimize the classification error using a support-

vector classifier for which the input is extracted features based on a pre-trained network. As the 

standard setting, we propose that the support vector classification model be based on a radial-

basis kernel function with two hyper parameters such as box constraint C and kernel scale 

gamma [21]. In the present study, the authors attempted to identify those hyper parameters that 

would minimize the cross-validation loss function in thirty iterations using the Bayesian 

optimization method.  

3. APPLIED RESULTS 

This section demonstrates case studies applied to earthquake damage data sets divided into five 

classes. Using ten pre-trained network architectures, the image data are extracted from a few or 

more concatenated layers next to the final output. The extracted features are imported as an 

input to the support-vector classification model and compared in terms of the accuracy for the 

pre-trained networks. Among the comparison studies, the most accurate classifier was obtained 

with the hyper-parameter optimization method.  

 



 

 

3.1. Earthquake damage data sets 

We attempted to collect open-source web pages from which earthquake damage images could 

be downloaded. The large earthquake disaster images were primarily collected from large 

Japanese earthquakes such as the Great Hanshin Earthquake (January 17, 1995) and the Great 

East Japan Earthquake (March 11, 2011). However, the areas were not limited to Japan, with  

images being acquired from around the world, provided they were usable. The present study 

highlights four earthquake disaster features such as tsunami damage, bridge collapses, road 

damage giving rise to a risk of accidents, and initial smoke and fire.  

Table 1 shows that the number of each type of disaster image is 221, 222, 210, and 210, 

respectively. The number of non-disaster images is 254. The total number of earthquake disaster 

feature datasets is 1,117 with a size of 931 Mb. The sizes of these disaster images were not 

always the same, but the smallest was 268 × 188 × 3, while the largest was 1920 × 1080 × 3, 

with the median size being 720 × 480 × 3. These disaster images were resized as the input of 

feature extraction using a pre-trained network, these are resized 224 × 224 × 3, frequently. 

Table 1.  The number of each class for an earthquake damage images : QuakeV 

Earthquake damage class Number of 

data 

Tsunami damage    221 

Bridge collapse    222 

Road damage with accident risk    210 

Initial smoke and fire    210 

Non-disaster    254 

Total of dataset 1,117 

 

3.2. Single- and two-layer extracted feature classifier applied results 

Utilizing ten pre-trained network architectures, the QuakeV image data set, mentioned above, 

was extracted from one or two concatenated layers next to the final output. The extracted 

features were applied as the input of the support vector classification models. The settings 

required to compute them were as follows: 1) Using the preferred ten pre-trained architectures, 

2) Constructing a support-vector classification model based on the training-feature matrix with 

782 rows and as many columns as the number of elements in one or two extracted layers, and 

test features with 335 rows and the same column size, 3) The execution environment used 

GTX1070 8-GB GPUs with a computation capacity of 6.1. 

Table 2 shows that the one and two layers of damage features are extracted as the inputs for 

which the feature matrix is applied to support the vector classifier trained results using the 

QuakeV dataset. On the three rows showing views such as Alex Net, VGG16, and VGG19, the 

first column classifier accuracy under the extracted single-layer neighbor final output is higher 

than that of the second column classifier under the one back-concatenated layer, respectively. 

Furthermore, the third column classifier under both extracted layers is the most accurate at each 

row, at around 92% accuracy. From the next view point on the three rows such as the Google 

Net, ResNet50 and Inception v3, there is the same relationship between the first classifier under 

the extracted layer neighbor of the final output and the second classifier under the one back-

concatenated layer. However, the third classifier under both extracted layers is less accurate, 

with the accuracy of each row decreasing by 0.3% to 1.2%. In contrast, the ResNet50-based 

classifier produces the highest accuracy at the second column classifier under the extraction of 

the one back-concatenated layer, which is more than the third classifier under both extracted 



 

 

layers. Therefore, it is not always true that an increase in the number of extracted features that 

are used as an input leads to a higher accuracy of the support-vector classifier. In the present 

study, the most promising classifier was found to be the ResNet50-based support vector 

classifier under the ‘add_15’ layer extracted features, with 100,352 elements. 

Table 2.  Single and two layers of damage feature extracted support vector classifier learning 

results using a QuakeV dataset. 

Pre-trained 

network 

Near final 

Extracted single 

layer (1) 

One backed  

Extracted single 

layer (2) 

Extracted  

both layers 

Alex Net ‘fc7’: #4,096 

91.94% 

‘fc6’: #4,096 

92.24% 

Both ‘fc7’ and ‘fc6’ 

92.84% 

VGG16 ‘fc7’: #4,096 

91.34% 

‘fc6’: #4,096 

91.94% 

Both ‘fc7’ and ‘fc6’ 

92.24% 

VGG19 ‘fc7’: #4,096 

90.75% 

‘fc6’: #4,096 

92.24% 

Both ‘fc7’ and ‘fc6’ 

92.24% 

Google Net ‘inception_5b’: 

#40,768 

91.94% 

‘inception_5a’: 

#40,768 

93.73% 

Both ‘inception_5b’ and 

‘inception_5a’ 

92.84% 

ResNet18 ‘res5b’: #25,088 

93.43% 

‘res5a’: #25,088 

92.54% 

Both ‘res5b’ and ‘res5a’ 

94.03% 

ResNet50 ‘add_16’:100,352 

92.84% 

‘add_15’:#100,352 

94.93% 

Both ‘add_16’ and ‘add_15’ 

93.73% 

Inception v3 ‘concate_2’: 

#49,512 

87.76% 

‘concate_1’: 

#49,512 

89.55% 

Both ‘concate_2’ and  

‘concate_1’ 

89.25% 

Here, #4,096 abbreviates that the number of elements is 4,096 contained at the extracted layer. 

 

 

Figure 3.  Confusion matrix of the QuakeV support vector classifier based on ResNet50 

extracted single feature at the ‘add_15’ layer 

Figure 3 shows the confusion matrix of the QuakeV support vector classifier based on the 

ResNet50 extracted single feature at the ‘add_15’ layer. Regarding the diagonal value of the 

confusion matrix, the predicted labels for each class match almost all the actual disaster feature 

classes. In the first row of bridge collapse, there is one false prediction regarding the initial 

smoke and fire. In the row for the initial smoke and fire, there are four false predictions related 



 

 

to bridge collapse. In the row related to non-disaster damage, there are four false predictions 

related to bridge collapse, smoke and fire, and tsunami damage. In the row for road damage 

leading to a risk of accidents, there are four false predictions related to bridge collapse. Because 

bridges are linked to the road network, there are images that fall between bridge collapse and 

road damage leading to a risk of accidents, in that there is a view of the road surface in the 

background. In the row for tsunami damage, there are four false predictions regarding bridge 

collapse. Therefore, the precision of the bridge collapse prediction is lower than that of the other 

classes. There are certain cases in which bridges are damaged by a tsunami flow, as occurred in 

the Great East Japan Earthquake of 2011. Those predictions were based on one iteration of a 

five-fold cross validation classifier. Further hyper-parameter optimization would be required to 

minimize the prediction error. Figure 4 shows 15 randomly selected images with the predicted 

label of the test image based on the ResNet50 classifier extracted single feature for the ‘add_15’ 

layer. These predicted labels are in good agreement with the images of the earthquake damage.  

 

Figure 4. Predicted label of support vector classifier using ResNet50 extracted single feature at 

the ‘add_15’ layer 

3.3. Three-layer extracted feature classifier applied results 

Table 3 shows the triple deep layers of damage features extracted from the support vector 

classifier learning results using a QuakeV dataset. The highest accuracy is 95.82% for the first 

row of the triple feature extracted classifier, based on the ResNet101. However, there is a large 

number of input features, specifically, 30,000 elements. For this reason, the model incurs 

disadvantages in that it requires much more memory and a longer computing time. In the fourth 

row of Inception-ResNet-v2, which corresponds to a rare case, the extraction of five back layers 

gives the classifier with the highest accuracy, specifically, 94.63%. Also, previous triple-feature 

extraction studies have shown that an increase in the number of extracted features as an input 

does not always lead to a higher level of accuracy of the support vector classifier. A view of a 

single layer near the final output, such as that of ResNet101 under ‘res5a’ and that of DenseNet-

201 under ‘conv5_block32,’ for which the extracted features are used as an input to the support 

vector classifier with the highest accuracy, 95.52%, for the single-layer extraction. The 



 

 

extracted feature has 9,000 or 10,000 fewer elements than the triple layers extracted with 

ResNet101, as mentioned above. Next, we implement hyper parameter optimization for the 

triple feature classifier extracted using ResNet101 for three layers, such as ‘res5c,’ ‘res5b,’ or 

‘res5a.’ Furthermore, we carried out single-feature classifier extraction based on ResNet101 

‘res5a’ and DenseNet-201 ‘conv_block32.’  

Table 3. Triple deeper layers of damage feature extracted support vector classifier learning 

results using a QuakeV dataset. 

Pre-

trained 

network 

Near final 

Extracted single 

layer (1) 

One backed 

Extracted single 

layer (2) 

Two backed 

Extracted single 

layer (3) 

Triple 

Extracted  

layers 

ResNet101 

 

‘res5c’: 

#100,352 

94.33% 

‘res5b’:  

#100,352 

94.63% 

‘res5a’:  

#100,352 

95.52% 

Triple:‘res5c’,‘res5b’ 

and ‘res5a’ 

95.82%  

ResNet101 

 

‘res5a’: 

#100,352 

95.52% 

‘res4b22’:  

#20,704 

92.24% 

‘res4b21’:  

#20,704 

92.84% 

Triple:‘res5a’,‘res4b22’ 

and ‘res4b21’ 

94.03%  

Inception-

ResNet-v2 

 

‘block8_10’: 

#133,120 

93.43% 

‘block8_9’: 

#133,120 

91.34% 

‘block8_8’: 

#133,120 

93.73% 

Triple:’block8_10’,  

’block8_9’,’block8_8’ 

93.13% 

Inception-

ResNet-v2 

 

‘block8_7’: 

#133,120 

94.03% 

‘block8_6’: 

#133,120 

94.63% 

‘block8_5’: 

#133,120 

94.03% 

Triple:’block8_7’,  

’block8_6’,’block8_5’ 

94.03% 

DenseNet-

201 

 

‘conv5_block32’: 

#89,736 

95.52% 

‘conv5_block31’: 

#89,736 

95.22% 

‘conv5_block30’: 

#89,736 

95.22% 

Triple:’conv5_block32’ 

, ‘block31’, ’block30’ 

95.22% 

DenseNet-

201 

 

‘conv5_block30’: 

#89,736 

95.22% 

‘conv5_block29’: 

#89,736 

95.52% 

‘conv5_block28’: 

#89,736 

95.52% 

Triple:’conv5_block30’ 

, ‘block29’, ’block28’ 

95.22% 

 

3.4. Hyper parameter optimized results 

Table 4 lists the hyper parameter optimization results regarding the top three support vector 

classifiers for an input of extracted features using pre-trained ResNet101 and DenseNet-201. 

The objective function is the loss function of the five-fold cross validation. This evaluation 

process is iterated 30 times to minimize the loss. The first row of the table shows the result 

where the triple layer features are extracted using ResNet101 under ‘res5c,’ ‘res5b,’ ‘res5a,’ and 

the feature inputs are evaluated to optimize the hyper parameters for the support vector classifier, 

for which the accuracy is improved to 97.01%, whereas the previously trained value was 

95.82%. The minimum objective function value is 0.0575. Given the large number of feature 

elements with three concatenated layers, the evaluation runs took 3.5 h. The second row of the 

table shows the results of extracting a single-layer feature using ResNet101 under ‘res5a,’ and 

for which the feature input is applied to optimize the hyper parameters for the support vector 

classifier, for which the accuracy is improved to 97.50%, whereas the previously trained value 

was 95.52%. The minimum objective function value is 0.0627. The training runs took 1.5 h to 

complete. The third row of the table shows those results for which the single-layer feature is 

extracted based on DenseNet-201 under ‘conv5_block32_concat,’ and the feature input are 

computed to optimize the hyper parameters for the support vector classifier, for which the 

accuracy is improved to 97.50%, where the previously trained value was 95.52%. This accuracy 

improvement is the same as that obtained for the extraction of a single layer with ResNet101. 

However, the minimum objective function value is 0.0588. The validation iterations took 1 h, 



 

 

50 min. Thus, the DenseNet-201-based feature extraction and hyper parameter optimized 

support vector classifier are the most promising when using a QuakeV earthquake damage data.  

Table 4. Hyper parameters optimized results of top-3 support vector classifier under an input of 

extracted feature using pre-trained ResNet101 and DenseNet-201. 

Pre-trained network Extracted layer trained 

classifier 

Hyper parameter  

optimized classifier 

 

ResNet101 

Triple layers extraction 

 

‘res5c’, ‘res5b’,‘res5a’: 

#301,056 

95.82% 

Objective function : 0.0575 

Box constraint C : 0.0061 

Rbf kernel scale : 3.0131 

Training run time : 215m39s 

97.01% 

 

ResNet101 

Single layer extraction 

 

‘res5a’:  

#100,352 

95.52% 

Objective function : 0.0627 

Box constraint C : 808.2094 

Rbf kernel scale : 625.0391 

Training run time : 97m34s 

97.50% 

 

DenseNet-201 

Single layer extraction 

 

‘conv5_block32_concat’: 

#89,736 

95.52% 

Objective function : 0.0588 

Box constraint C : 0.4305 

Rbf kernel scale : 0.0649 

Training run time : 108m26s 

97.50% 

Note) The objective function stands for the 5-fold cross validation function value. 

 

Figure 5.  Hyper parameters optimization process of support vector classifier based on 

ResNet101 extracted single feature ‘res5a’ layer 

Figure 5 shows the hyper-parameter optimization process for a support vector classifier based 

on the ResNet101 extracted single feature ‘res5a’ layer. After three iterations of five-fold cross 

validation, the loss function was minimized at a stable level of around 0.06 during the validation 

runs. Furthermore, Figure 6 shows the hyper-parameters optimization process for the support 

vector classifier based on the single feature ‘conv5_block32_concat’ layer extracted with 

DenseNet-201. After three iterations, the loss function was minimized at a stable level around 

0.062. Furthermore, at the points corresponding to six and twelve iterations, the objective 



 

 

function value was again improved at that point at which the evaluation process converged to a 

minimum of 0.058. 

 

Figure 6.  Hyper parameters optimization process of support vector classifier based on 

DenseNet-201 extracted single feature ‘conv5_block32_concat’ layer 

 

Figure 7.  Confusion matrix of a QuakeV hyper parameter optimized support vector classifier 

extracted feature ‘conv5_block32_concat’ layer based on DenseNet-201  

Figure 7 shows the confusion matrix for a QuakeV hyper-parameter optimized support vector 

classifier feature ‘conv5_block32_concat’ layer, extracted based on DenseNet-201. Regarding 

the diagonal value of the confusion matrix, the matching of the predicted labels for each class 

are improved for almost all the actual damage classes than those shown in Figure 3. In the first 

row, for bridge collapse, there is one false prediction regarding initial smoke and fire and road 

damage leading to a risk of accidents. In that row for initial smoke and fire, there are three false 

predictions regarding bridge collapse, which is less than the prediction shown in Figure 3. In the 



 

 

row for the non-disaster damage, there is no improvement in the number of false predictions 

relative to Figure 3. In the row for the road damage leading to a risk of accidents, there are two 

false predictions regarding bridge collapse, which is less than in Figure 3. In the row for 

tsunami damage, there are two false predictions for bridge collapse. In the first column, there 

are still seven false bridge collapse predictions, although this is an improvement over the 

thirteen false predictions in Figure 3. Figure 8 shows fifteen randomly selected test images and 

the predicted labels for the QuakeV hyper parameter optimized support vector classifier 

extracted feature ‘conv5_block32_concat’ layer, based on DenseNet-201. These predicted labels 

are in good agreement with the actual images of earthquake damage, being similar to the 

prediction results shown in Figure 4. 

 

Figure 8. Predicted label of a QuakeV hyper parameter optimized support vector classifier 

extracted feature ‘conv5_block32_concat’ layer based on DenseNet-201 

4. CONCLUSIONS 

To conclude this paper, we present the contribution of this work as demonstrated through 

several machine-learning case studies. We believe that disaster damage data mining offers the 

opportunity to discover further knowledge needed for disaster mitigation and social loss. 

4.1. Contribution of this work 

This paper proposes an application to classify disaster damage using feature-extracted support 

vector classifiers based on ten pre-trained architectures. These results were applied to a QuakeV 

earthquake damage data set. It was found that the disaster damage classifier based on DenseNet-

201 under the single ‘conv5_block32_concat’ layer feature extraction is the most promising 

with approximately 97.50% accuracy. Although the ResNet101-based classifier produced the 

same level of accuracy, the minimum loss function value is larger than that of the DenseNet-

201-based classifier. To support decision making with respect to the initial response and to 

mitigate the relevant loss after a large earthquake using CCTV images, this paper highlighted 

disaster damage features such as tsunami damage, bridge collapse, initial smoke and fire, and 



 

 

road damage leading to a risk of accidents. We actually implemented the image classification 

method by applying it to a dataset containing 1,117 images. We drew on relevant open-source 

websites from which we could download digital image records of large earthquake damage. 

Using the ten pre-trained architectures, we constructed a support vector classification model 

based on 782 training data sets and 335 validation images. For one of the feature-extracted 

learning results, based on ResNet101 and DenseNet-201 using a single layer, we achieved an 

accuracy of 95.52%. Furthermore, the hyper parameters of these models could be optimized at 

an accuracy of 97.50% among our trial classifiers. After the classification model reads an input 

image, it can compute the indexes of the predicted label to determine whether the true disaster 

feature class belongs to the actual class or not. Thus, the proposed disaster damage classifier 

application and the QuakeV earthquake dataset can be used with datasets consisting of 

thousands of images.   

4.2. Future work 

It should be possible to apply disaster damage classification not only to earthquake damage, but 

also to other disasters such as building collapse [26], traffic signal failure, landslides, strong 

winds [27], and heavy rain and floods [28]. In our daily life, fire and flood disasters occur much 

more frequently than earthquakes. This proposed classifier could enable target disaster 

surveillance for each region using thousands of disaster feature images covering the target 

classes. It would take a long time and a considerable amount of work to collect newly obtained 

disaster damage features based on CCTV records and other multi-mode data resources which 

contain initial damage features. We will continue to collect video data after a large earthquake 

occurs. Disaster datasets are not always learned from overall images, but rather from localized 

detections for which the original images focus on clear disaster features. In contrast, the 

background disaster region of interest should be excluded for noise reduction. We would 

monitor the added variations in the disaster features that have not yet been experienced, such 

that disaster damage mining would enable the discovery of the knowledge needed to make 

decisions on initial responses with respect to high-priority locations with significantly damaged 

infrastructure. 
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