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Abstract. In recent times, significant natural disasters have affected our city
lives. This includes the occurrence of large earthquakes that have devastated the
city’s infrastructure. During such times of crisis, it is important that emergency
response times be as quick as possible to mitigate harm and loss. To achieve
this, priority must be given to the various types of initial emergency response.
Color image monitoring has the potential to prioritize responses. It uses multi-
mode data resources such as openly sourced photos on social media, smartphone
cameras, CCTV, and so forth. This paper presents a method to enhance the
damaged color features extracted based on a pre-trained deep architecture
DenseNet-201 in order to classify damage caused by several earthquakes, whose
classifiers are Bayesian optimized to minimize the loss function with cross-
validation. This method is applied to a case study of an earthquake image
dataset. The study incorporates five target categories, namely bridge collapse,
initial smoke and fire, road damage with accident risk to expand secondary loss
for relevant users, tsunami damage, and non-disaster. Some advantages have
been found when using color feature extraction for monitoring quake damage
and further opportunities are remarked (189 words).

Keywords: Quake image monitoring � Color-base augmentation �
DenseNet-201 � Damage feature enhancement � Support vector classifier

1 Introduction

1.1 Related Papers and Damage Color Imaging

Disaster Damage Monitoring and Color Image Sources
Manzhu et al. [1] reviewed the major sources of big data, the associated achievements
in disaster management phases to monitor and detect natural hazards, methods to
mitigate against disaster-related damage, and the recovery and reconstruction pro-
cesses. This study focuses on the urgent response phase after an earthquake, which
monitors and detects damage and allows for make decisions in order to address initial
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rapid actions regarding high-priority infrastructures such as roads, intersections,
bridges, river gates, and public facilities. Between 2014 and 2016, several data sources
were observed in articles, during a time when big data was a popular topic in disaster
management. These data sources included satellite, social media, crowd-base data
source, sensor web and IoT, mobile GPS, simulation, unmanned aerial vehicles
(UAVs), light detection and ranging (LiDAR). Among these digital data sources,
satellite imagery [2, 3] and social media [4, 5] data serve as the most popular type of
data for disaster management.

However, satellites used for remote sensing travel at slow speeds and contain an
interval gap in the data spanning from the previous flyover to the subsequent flyover.
These photographs are not sequential causing delay when trying to recognize features
of an earthquake disaster. Through the use of social media, spatial temporal sentiment
analysis is possible. However, this is prone to inaccuracies because users of social
media do not always monitor the disaster damage consistently. Witnesses to a natural
disaster will prioritize their well-being and seek safety and shelter after an earthquake
resulting in inconsistent data. Messaging is found to occasionally lack essential signals
owing to noise, resulting in misinformation. This study focuses on the damaged color
image source for monitoring the disaster damage of critical infrastructures to efficiently
decide which high-priority responses to undertake them.

Color-Base Segmentation and Color Feature Augmentation
Regarding color-based image segmentation using K-means clustering, many proposals
and experimental results have been reported. Chitade [6] presented an image seg-
mentation for satellite imagery based on color features in two stages where enhance-
ment of color separation used decorrelation stretching and then grouped the regions
into five classes using the K-means clustering algorithm to convert image from RGB to
L*a*b* color space. The source claimed that it is possible to reduce the computational
cost avoiding feature calculation for every pixel in the image. However, the source
focused only on the satellite imagery for mapping the changes of color-base land cover
to classify land use pattern. Shmmala [7] compared three versions of K-means clus-
tering algorithms for biological images and ordinary full-colored images under RGB
and L*a*b* spaces. Hassan et al. [8] attempted to find the optimal parameter K
automatically, and therefore created segmentation without any human supervision to
the algorithm. Then, they applied the algorithm to several types of images including
flowers, birds, fruits, and games having funs. They presented the combined segmen-
tation of RGB and HSV color spaces, which yielded more accurate results compared to
that of a single color space. This combined case had the disadvantage of requiring twice
the calculation costs; further, both color spaces are device-dependent.

However, there is currently no approach that is focused on using images of disasters
for monitoring damage, and a method of damage color segmentation has not yet been
reported to be used as an input for the enhancement of damage feature extraction.
Adding the original images with such damage feature extraction using color-based
segmentation could enhance the damage features, thereby improving the accuracy of
classifier incorporating with color-base saliency enhancement more than that of clas-
sifier using the original images. This paper presents a method to enhance the damaged
color-base feature extracted based on a pre-trained deep architecture in order to classify
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several types of damage after a disaster event, whose classifiers are Bayesian optimized
to minimize the loss function with cross-validation. This method is applied to a case
study of an earthquake image dataset. Five target classes, namely bridge collapse,
initial smoke and fire, road damage with accident risk to expand secondary loss for
relevant users, tsunami damage, and non-disaster are incorporated.

2 Damage Color Imaging Application

2.1 Earthquake Damage Image Dataset

With regard to disaster image datasets, the NOAA [9] provides a natural hazard image
database with 1,163 photo images of 67 events of earthquakes that have occurred in the
past 100 years from 1915 to 2015. It provides a gallery view of images of each
earthquake event. The database includes earthquake disaster images from the USA,
Mexico, Guatemala, Colombia, Nicaragua, Peru, Chile, Haiti, Ecuador, Russia, Iran,
Turkey, Pakistan, Algeria, Romania, Italy, Papua New Guinea, Australia, New Zeal-
and, Samoa, China, Indonesia, Taiwan, and Japan. However, the quality of the image
differs for instances where low-resolution satellite images are used, airplane flight
downward view is used, the angle of some photos is on the outdoor and indoor and
front of the crushed house. Their region of interests and angles are different and the
almost private historical photo collected wisdom without any unified rule. Each
earthquake event has limited images; these ones consist of only few disaster images at
each earthquake events on that database. Almost all these images are recorded after the
earthquakes have occurred, when it has taken more than one week for an international
academic survey to obtain relevant lesson historically. We attempted to collect openly
source web pages from where the earthquake damage images could be downloaded.

Fig. 1. Thumbnail of disaster color image: QuakeV dataset with 16 chosen examples.
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This paper highlights the five features of earthquake disasters, namely tsunami
damage, bridge collapse, road damage with accident risk, initial smoke and fire, and
non-disaster. The authors collected a total number of 1,117 earthquake disaster feature
images featured in the datasets. Herein, we focus on earthquake damage features
among the color images, and we propose a dataset called QuakeV. Figure 1 shows the
thumbnail of the earthquake damage image dataset with validation data that comprised
16 chosen images of each class: tsunami damage, bridge collapse, road damage with
accident risk, initial smoke and fire, and non-damage.

2.2 Damage Color Feature Extraction

L*a*b* Color Space Transformation from RGB
Several color spaces exist for color image representations; some spaces are device-
dependent and the other spaces are device-independent. The former includes the RGB,
NTSC, YCbCr, HSV, CMY, CMYK, and HSI spaces; these spaces represent color
information in ways that are more intuitive or suitable for a particular application. For
example, the appearance of RGB colors varies with display and scanner characteristics,
and CMYK colors vary with printer, ink, and paper characteristics [10]. These device-
dependent color spaces are not the preferred choice for disaster monitoring. This is
because the color imaging system does not achieve a sufficient consistency in pre-
trained detectors or classifiers required to predict target images. In contrast, one of the

Fig. 2. Thresholding three components to mask the background based on RGB (top) and
L*a*b* (bottom), photo of the Great Hanshin Awaji Earthquake using the Kobe open data.
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most widely used device-independent color spaces is the 1931 CIE XYZ color space
developed by Commission Internationale de l’Eclairage (CIE). The CIE has developed
additional color space specifications that are better suited to some purposes than XYZ.
For example, these include the xyY, uvL, L*a*b*, and L*ch, and sRGB spaces. These
device-independent color spaces are supported by the Image Processing Toolbox [11].
The L*a*b* color space was introduced in 1976, and is widely used in color science as
well as the design of color devices such as printers, cameras, and scanners. The L*a*b
color space provides two key advantages over XYZ as a working space. First, L*a*b*
more clearly separates gray-scale information represented as L* values from color
information represented using a* and b* values. Second, the L*a*b* was designed so
the Euclidean distance in this space corresponds reasonably well with perceived dif-
ferences between colors. Because of this property, the L*a*b* color space is percep-
tually uniform. As a corollary, L* values relate linearly to human perception of
brightness [11].

The device-independent color space is suited to disaster monitoring. This study uses
the L*a*b* color space to take advantage of this trait. Figure 2 shows the thresholding
three components on two color spaces such as RGB (top) and L*a*b* (bottom), photo
of the Great Hanshin Awaji Earthquake [12]. In the RGB color space, each component
has a similarly distributed histogram. Thresholding R, G, and B components, the sky
background is masked and the targets such as bridge and road pavement are focused,
although trees and grass remain. In the L*a*b* color space, L* represents the
brightness information of gray scale, and a*b* components represent the color infor-
mation. The L*a*b* color space more flexibly achieved to mask sky, trees, and grass.
This paper proposes a damage color segmentation based on the L*a*b* values to
localize the target features such as infrastructures and damage for disaster monitoring
(Fig. 3).

Fig. 3. Damage color segmentation based on the a*b* space using K-means clustering.

264 T. Yasuno et al.



Color-Base Augmentation Using Color Segmentation K-Means Clustering
This paper presents a color-base augmentation using damage color segmentation,
where the original images are transformed from the RGB to L*a*b* color space to take
advantage of the fact that L*a*b* is one example of a device-independent color space.
The L* value can represent the brightness with gray-scale information. The a*b* space
can represent the color information. These values can act as the input for the K-means
clustering algorithm for color-based segmentation. We can calculate these distances
with color space similarity on neighbor pixels selecting whether the Euclidean or city
block. In the case using the Euclidean distance to minimize a cost function, there were
many calculation results that did not converge in the disaster image dataset. This paper
proposes to use the city block distance between the center and any nearby points.

Color-Base Damage Feature Categorization for Quake Disaster Monitoring
The color-base region of interest (ROI) monitoring a disaster image is divided into four
categories, namely (1) damaged infrastructure with earthquake disaster or (2) health
infrastructure without disaster, (3) traffic sign, and (4) background. For example, the
color-base ROI of health infrastructure is represented by bridge with concrete white
color and road pavement is denoted by blue-colored asphalt (fresh pitch stone - rekisei)
and faded into gray-colored. In detail, damaged infrastructure with disaster features are
divided into two patterns, at first, the same color with disaster specific-shape (collapse,
crack, curve like wave, break, and interruption). Second, the specific-color with
damaged parts of infrastructure (road crack showing stratum underground with brown-
color) and the background disaster-change (gray and black smoke, orange fire, tsunami
black sea). The color-base ROI of traffic sign is denoted by the center line with orange-
color, and the side line with white-color. That of background contains sky with light
blue or cloudy white color, tree with green and brown-color, and river with blue and
green-color, and ground with brown-color, these color corresponds to the temperature
and time-range. Several color clusters (K = 2, 3, 4, 5) are segmented; these categorized
images are used as an input of color feature extracted data for learning a damage
classifier. In contrast, the parts of the background category are masked. These back-
ground color segmented images are not added to the original images as an input of a
damage classifier, because the background color is not damaged signal but noise
without enhancement.

2.3 Support Vector Damage Classifier

Damage Feature Extraction using Pre-trained Deep Network: DenseNet-201
Feature extraction is commonly used in machine learning applications. We can con-
sider a pre-trained network and use it as an input feature to learn a classification task.
Image classification using feature extraction is generally much faster and less com-
putationally strenuous than the transfer learning process tuning weights and biases at
deep layers. We can rapidly construct a classifier to a new task using an extracted
feature at the concatenated layer as a training column vector [13]. This paper proposes
a support vector classification model using a single layer from the concatenated feature
extraction. Furthermore, we provide the classification model using multiple layers from
several feature extractions at significant concatenated points. We can load pre-trained
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networks such as AlexNet [14], GoogleNet [15], VGG16 and VGG19 [16], ResNet18,
ResNet50 and ResNet101 [17], Inception v3 [18], Inception-ResNet-v2 [19], Squee-
zeNet [20] and DenseNet-201 [21]. Yasuno et al. have already compared feature
extracted support vector classifiers based on above ten pre-trained architectures, where
they found that DenseNet-201 based support vector classifiers had the best accuracy
among the 10 models toward the disaster image dataset [22]. This paper proposes that
the damage feature extraction using DenseNet-201 whose features under “con-
v5_block32_concat” concatenated layer are used as an input of the support vector
classification model.

Color-Base Damage Feature Enhanced Support Vector Classifier
Let us suppose multiple disaster feature classes for a support vector classification model.
In multiple classification models of more than two classes, we use a voting strategy [23–
25]: each binary classification is considered to be a vote where votes can be for all data
points in the end. The point is designated to be in a class with the maximum number of
votes. The rapid library, LIBSVM, implements the one-against-one approach for multi-
class classification. Many other methods are available for the multi-class support vector
classification [23–25]. This study uses the kernel of a radial basis function with
parameter gamma. In the case of image classifications, the number of extracted features
is always a large number. In this study, there is a maximum instance whose number of
disaster feature column vectors is 89,736 elements. In the case of an earthquake damage
dataset we used, the support vector classification method confirmed the preferred
advantage concerning both faster and accurate computation compared with other clas-
sification methods such as k-nearest neighbors, decision trees, random forests, and
boosting methods. This study constructs a support vector classifier using damage color
extracted features based on DenseNet-201 pre-trained networks (Fig. 4).

Hyper Parameter Bayesian Optimization Method for Damage Classifier
There exists automated machine learning methods that use Bayesian optimization to
tune hyper parameters of the machine learning pipeline. We can implement some
libraries such as Auto-WEKA, auto-sklearn, and Auto-Model [26–28]. Grid search and

Fig. 4. Feature extraction enhanced with damage color and support vector classifier
optimization.
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randomized search do not use the information produced from previous training runs;
this is a disadvantage not encountered with Bayesian-based optimization methods.
Bayesian-based optimization methods leverage the information of previous training
runs to determine the hyper parameter values for the next training run and navigate
through the hyper parameter space in a more efficient manner. The basic idea of warm
start is to use the information gained from previous training runs to identify smarter
starting points for the next training run. When building machine learning models, a loss
function helps in minimizing the prediction error during the training phase. This paper
proposes a Bayesian optimization method whose objective function is a loss function
from five-fold cross validation to minimize the classification error using a support
vector classifier that contains input of extracted features based on a pre-trained net-
work. As a standard setting, we propose that the support vector classification model is
based on a radial basis kernel function with two hyper parameters such as a box
constraint C and kernel scale gamma [23, 24]. This study attempts to find as many
hyper parameters as possible as we can minimize the cross-validation loss function
with 30 iterations using the Bayesian optimization method.

3 Applied Results

3.1 Quake Disaster Image Dataset

We attempted to collect open source data from web pages where images of earthquake
were available. The collective area made up of high-resolution earthquake disaster
images is primarily based on large Japanese earthquake experiences such as the Great
Hanshin Earthquake (1995 Jan 17) and the Great East Japan Earthquake (2011 Mar
11). However, these areas are not limited only to Japan but areas whose images can be
used worldwide. This paper highlights the four earthquake disaster features consisting
of tsunami damage, bridge collapse, road damage with accident risk, and initial smoke
and fire. Table 1 shows that the number of original images for each category is 40,
resulting in a total dataset containing 200 earthquake disaster feature images. After
damage color segmentation without background clusters such as sky, trees, and rivers,
the number of each target color extracted cluster image is 51, 42, 70, 46, 43, such that
the total number of images within the color extracted features dataset is 252. Therefore,

Table 1. Quake image original/augmented dataset and number of images within each class.

Earthquake damage
class

Number of
original images

Number of color-base
augmented images

Number of combined
both images

Tsunami damage 40 51 91
Bridge collapse 40 42 82
Road damage with
accident risk

40 70 110

Initial smoke and fire 40 46 86
Non-disaster 40 43 83
Sum of five classes 200 252 452
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the number of each target damage feature image is 91, 82, 110, 86, 83, resulting in a
total usable dataset of 452 images. The total images are partitioned into training dataset
and test dataset with rate 7 and 3, respectively. In order to compare the original data
and the damage color added data, a test dataset consisting of 60 images is used for both
cases, which is calculated as 30% of the original dataset. The number of training data
with the original data is 140 images; this number is 70% of 200. Meanwhile, the total
number of training data with added color extracted data with the original data is 316
images; this number is 70% of 452.

3.2 Color-Base Augmentation Using Damage Feature Extraction

In the following, the quake image dataset is applied to the color segmentation method
using the K-means clustering algorithm. We indicated some color cluster images
corresponding to each category such as background, infrastructure, road damage,
smoke and fire, and tsunami on the following images.

Background Color Feature Extraction
Sky, Tree, River Feature (Fig. 5).

Health Infrastructure Color Feature Extraction (Non-disaster)
Road Pavement, Bridge Feature (Fig. 6).

Fig. 5. Background color segmentation K-means clustering results.

Fig. 6. Infrastructure color segmentation K-means clustering results.
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Traffic Sign Color Feature Extraction
Center line, Sidewalk line (Fig. 7).

Damaged Infrastructure Color Feature Extraction
Bridge Collapse Feature (Fig. 8).

Road Damage Color Feature (Fig. 9).

Smoke and Fire Color Feature (Fig. 10).

Fig. 7. Broken and curved traffic sign color segmentation K-means clustering results.

Fig. 8. Bridge collapse and interruption color segmentation K-means clustering results.

Fig. 9. Crack and stratum color segmentation K-means clustering results.

Fig. 10. Smoke and fire color segmentation K-means clustering results.
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Tsunami Color Feature (Fig. 11).

3.3 Quake Damage Classifier Prediction Results

Classification Results Using Color-Base Augmentation
On thefirst row of Table 2,we show a result where input featureswith 89,736 valueswere
extracted based onDenseNet-201 under “conv5_block32_concat.”The feature inputs are
computed to optimize hyper parameters for support vector classifiers, resulting in an
accuracy improvement of 96.67%. The minimum objective function value is 0.0429. The
process had a duration of 16 min 17 s during five-fold cross-validation iterations. On the
second row of Table 2, we show a result where input features were extracted based on
DenseNet-201 under the same concatenated layer, and the feature inputs are computed to
optimize hyper parameters for support vector classifiers, resulting in an accuracy
improvement of 98.68% more than previous original case. The minimum objective
function value is 0.0568. The process has a duration of 16 min 50 s duringfive-fold cross-
validation iterations. Thus, the color-base augmentation enhanced damage features is
possible to improve the accuracy of the hyper parameter optimized support vector clas-
sifier using an earthquake damage dataset.

Fig. 11. Wave with splash color segmentation K-means clustering results.

Table 2. Hyper parameter optimized results of support vector classifiers under an input of
extracted features using pre-trained DenseNet-201.

Input data Feature extraction under pre-
trained network

Hyper parameter
optimized classifier

Original images #200 DenseNet-201
“conv5_block32”:
#89,736

Objective function:
0.0429
Box constraint C: 0.0010
Rbf kernel scale: 0.0190
Training run time:
16 min 17 s
96.67%

Color-base augmentation added
damage feature
extracted images
#452

DenseNet-201
“conv5_block32”:
#89,736

Objective function:
0.0568
Box constraint C: 0.0298
Rbf kernel scale: 0.0112
Training run time:
16 min 50 s
98.68%

Note: The objective function denotes the five-fold cross validation function value.
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Figure 12 shows a hyper parameter optimization process of support vector classifier
based on DenseNet-201 extracted single feature “conv5_block32_concat” layer. After
three iterations, the loss function minimized at the stable level around 0.042.

Figure 13 shows a hyper parameter optimization process of support vector classifier
based on DenseNet-201 extracted single feature “conv5_block32_concat” layer. After
two iterations, the loss function minimized at the stable level around 0.056.
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Fig. 12. Original image dataset (#200): hyper parameter optimization process of support vector
classifier based on DenseNet-201 extracted single feature “conv5_block32_concat” layer.
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Fig. 13. Color-base augmentation added with original image dataset (#452): hyper parameter
optimization process of support vector classifier based on DenseNet-201 extracted above layer.
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Figure 14 shows the estimated minimum objective function value at the hyper
parameter optimization process of support vector classifier. Although the minimized
value under the original data (green line)warm starts, but after two iterations, the objective
function value under the color-base augmentation (red line) maintains smaller level than
the original one. Thus, this indicates that color-base augmentation has advantages with
regard to accuracy and fast minimization for hyper parameter optimization.

Confusion Matrix Under Damage Color Classifier
Table 3 shows the confusion matrix of a hyper parameter optimized support vector
classifier extracted feature “conv5_block32_concat” layer based on DenseNet-201.
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Fig. 14. Comparison of estimated objective functions of the original image data and the color
image enhanced with the original image dataset: hyper parameter optimization process of support
vector classifier based on DenseNet-201 (Color figure online)

Table 3. Confusion matrix of hyper parameter optimized support vector classifier extracted
feature based on DenseNet-201; the original data training (left), and the damage color feature
added with original data (right).
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4 Concluding Remarks

4.1 Color Imaging Applications for Quake Disaster Monitoring

This paper presented a method to enhance the damage color feature extracted based on
an object suited deep architecture DenseNet-201 in order to classify five classes of
quake damage: tsunami, bridge collapse, road crack with accident risk, and smoke and
fire. The training data were based on original images combined with added damage
color features to incorporate the enhancement of several target features without other
masked regions such as the sky, trees, and rivers. This support vector classifier con-
taining a radial basis kernel function, the image classification model were Bayesian
optimized to minimize the loss function with five-fold cross-validation. This method
was applied to a case study of an earthquake image dataset whose total number was 452
examples with 89,736 color features. The first study using the original images were
carried out with an accuracy of 96.67%, whereas the second study using the original
and damage color extracted images achieved a more accurate rate of 98.68%. The loss
function was also minimized faster and at a stable level. Therefore, it can be concluded
that damage color extraction has advantages with regard to accuracy and fast mini-
mization for hyper parameter optimization.

4.2 Future Works for Disaster Color Monitoring

The earthquake image dataset has 1,117 examples; therefore, we will attempt to apply
this proposed method with color enhancement. Here, it is important to automate the
hyper parameter K based on K-means clustering and an autonomous color segmenta-
tion; i.e., whether each color cluster corresponds to a damage class or not. We will
tackle the problem thresholding color components under the a*b*space. We will
investigate further opportunities regarding disaster damage classification for not only
earthquake damage features but also other disaster features such as strong winds [31],
building break down [32], traffic signal black out, and heavy rain and flood [33].
Disasters such as fire and flood are likely to occur more frequently when compared to
earthquakes. This proposed color enhanced classifier could enable targeted disaster
surveillance within each region, learning thousands of damage color features. It would
take considerable time to collect newly damaged color data. We will continue to collect
video data after the occurrence of any large earthquake worldwide to incorporate novel
damage color variations not yet experienced. Such data mining of damage colors could
contribute to better decision-making and prioritization of deploying an initial response
to damaged infrastructure.
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