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Since 2006, rainfall forecasting such as short-range forecasts of precipitation has been provided to prepare for the occurrence 
of torrential rains and extreme floods. In order to prepare for uncertain floods, it is important for dam managers to improve the 
accuracy of dam inflow forecasts. In this study, a one-dimensional convolutional network prediction model is proposed for 
predicting dam inflows up to six hours in advance, using various dam quantities and short-range forecasts of precipitation. We 
also apply several methods to improve the accuracy focusing on the loss and activation functions. As a result of comparing the 
accuracy with the baseline MLP, RNN and LSTM models, it is confirmed that the prediction accuracy of the 1D convolutional 
network is as good as or better than the baseline. Finally, we mention the usefulness of our method in terms of accuracy 
improvement and issues for future generalization. 
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3-4h MSE (baseline) 0.840 0.760
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